Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22050092-6    https://doi.org/10.11896/cldb.22050092
  金属与金属基复合材料 |
中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响
姚三成1,2,*, 赵海1,2, 刘学华1,2, 江波1,2, 邹强1,2, 徐康2,3
1 马鞍山钢铁股份有限公司技术中心,安徽 马鞍山 243003
2 轨道交通关键零部件安徽省技术创新中心,安徽 马鞍山 243003
3 宝武集团马钢轨交材料科技有限公司技术中心,安徽 马鞍山 243003
Intragranular Ferrite in Medium Carbon Vanadium-containing Wheel Steels and Its Effect on Fracture Toughness
YAO Sancheng1,2,*, ZHAO Hai1,2, LIU Xuehua1,2, JIANG Bo1,2, ZOU Qiang1,2, XU Kang2,3
1 Technology Center, Ma’anshan Iron and Steel Co., Ltd., Ma’anshan 243003, Anhui, China
2 Anhui Technology Innovation Center of Rail Transit Key Components, Ma’anshan 243003, Anhui, China
3 Technology Center, Baowu Group Masteel Rail Transit Materials Technology Co., Ltd., Ma’anshan 243003, Anhui, China
下载:  全 文 ( PDF ) ( 18690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用光学显微镜、扫描电镜、透射电镜、常温拉伸及断裂韧性试验等研究了奥氏体区“低过冷”预处理对中碳含钒车轮钢的显微组织、第二相及力学性能的影响。结果表明,在935 ℃充分奥氏体化后,经860~800 ℃过冷处理,对车轮钢最终的主体组织组成影响不大,珠光体片间距为(131±7) nm,先共析铁素体体积分数为(10.6±0.8)%;但纳米级析出相的数目与过冷温度直接相关,进而影响析出强化的强度贡献。经860~840 ℃过冷处理,车轮钢的强度无明显降低,而断裂韧性的均值和最小值分别相对提高10.9%~14.2%和22.1%~31.8%,获得了较好的强韧匹配;过冷温度的进一步降低,强度牺牲增大,强韧匹配出现失衡。“低过冷”预处理使原奥氏体晶内析出尺寸较大、与基体呈半共格关系的V(C,N)第二相,并在后续冷却相变阶段诱导晶内铁素体(IGF)形核,且过冷温度越低,IGF数量越多,但IGF尺寸变化不大。IGF的形成增加了显微组织内的相界面,裂纹扩展阻力进一步提高,宏观表现为更高的断裂韧性。奥氏体区“低过冷”的本质是改变了钒在析出强化方面的权重贡献,协同控制铁素体的形态分布,为改善中碳含钒车轮钢的强韧匹配提供了新途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚三成
赵海
刘学华
江波
邹强
徐康
关键词:  车轮钢  奥氏体区低过冷  晶内铁素体  断裂韧性  含钒第二相    
Abstract: The effect of low undercooling pretreatment in austenite on microstructure, second phase and mechanical properties of a medium carbon vanadium-containing wheel steel was investigated by optical microscope, scanning electron microscope, transmission electron microscope, tensile test and fracture toughness test. The results show that the final main microstructure of the wheel steel undercooled within 860 — 800 ℃ after it has been fully austenitized at 935 ℃ is slightly varied. The pearlite interlamellar spacing is (131±7) nm, and the volume fraction of pro-eutectoid ferrite is (10.6±0.8)%. However, the number of nano-scale precipitates is directly related to the undercooling temperature, which affects the strength contribution of precipitation strengthening. In the range of 860—840 ℃, the undercooling pretreatment does not reduce the strength obviously, but it increases the average and minimum fracture toughness values by 10.9% — 14.2% and 22.1%— 31.8%, respectively. The strength sacrifice increases with the further decrease of undercooling temperature, so the matching between strength and toughness is unba-lanced. Due to the low undercooling pretreatment, the solid-solved vanadium is pre-precipitated in the form of V(C, N) second phase with a large size and semicoherent with the matrix in the original austenite grain. This phase induces the nucleation of intragranular ferrite (IGF) in the subsequent cooling phase transformation stage. The lower the undercooling temperature, the greater the number of IGFs, though the average IGF size slightly changes. The presence of IGF increases phase interface of the microstructure, and the resistance to crack propagation is further increased, thus resulting in higher fracture toughness at the macro level. The essence of the low undercooling pretreatment in austenite is to change the weighted contribution of the vanadium in precipitation strengthening, cooperating with the control of ferrite morphology distribution, which provides a new way to improve the matching between strength and toughness of medium carbon vanadium-containing wheel steels.
Key words:  wheel steel    low undercooling in austenite    intragranular ferrite    fracture toughness    vanadium-containing second phase
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  TG113  
  TG156  
基金资助: 安徽省科技重大专项计划(202003a05020038)
通讯作者:  * 姚三成,硕士,2016年毕业于中南大学材料工程专业,现为马鞍山钢铁股份有限公司技术中心研究员,工程师职称,从事铁路轮轴材料、工艺研究及产品开发工作,研究方向涉及微合金化物理冶金、强韧化机理、热处理数值模拟、应力腐蚀等。发表SCI论文1篇、核心期刊论文10余篇;申请发明专利30余件,其中已授权10余件。scyao831@sina.com   
引用本文:    
姚三成, 赵海, 刘学华, 江波, 邹强, 徐康. 中碳含钒车轮钢中的晶内铁素体及其对断裂韧性的影响[J]. 材料导报, 2023, 37(22): 22050092-6.
YAO Sancheng, ZHAO Hai, LIU Xuehua, JIANG Bo, ZOU Qiang, XU Kang. Intragranular Ferrite in Medium Carbon Vanadium-containing Wheel Steels and Its Effect on Fracture Toughness. Materials Reports, 2023, 37(22): 22050092-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050092  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22050092
1 Sakamoto H, Toyama K, Hirakawa K. Materials Science and Engineering A, 2000, 285, 288.
2 Ekberg A, Kabo E. Wear, 2005, 258, 1288.
3 Wetenkamp H R, Kipp R M. Journal of Engineering for Industry, Tran-sactions of the ASME, 1978, 100, 363.
4 Wu S, Li X C, Shang C J, et al. Transactions of Materials and Heat Treatment, 2012, 33(7), 100 (in Chinese).
吴斯, 李秀程, 尚成嘉, 等. 材料热处理学报, 2012, 33(7), 100.
5 Li S J, Ren X C, Gao K W, et al. Journal of University of Science and Technology Beijing, 2011, 33(9), 1105 (in Chinese).
李胜军, 任学冲, 高克玮, 等. 北京科技大学学报, 2011, 33(9), 1105.
6 Gong S, Ren X C, Chen G, et al. Chinese Journal of Engineering, 2016, 38(4), 522 (in Chinese).
龚帅, 任学冲, 陈刚, 等. 工程科学学报, 2016, 38(4), 522.
7 Yao S C, Ding Y, Zhao H, et al. Materials Reports, 2020, 34(S1), 452 (in Chinese).
姚三成, 丁毅, 赵海, 等. 材料导报, 2020, 34(S1), 452.
8 Yao S C, Gong Y H, Zhao H, et al. Transactions of Materials and Heat Treatment, 2020, 41(2), 67 (in Chinese).
姚三成, 宫彦华, 赵海, 等. 材料热处理学报, 2020, 41(2), 67.
9 Li Y, Yang Z M. Acta Metallurgica Sinica, 2010, 46(12), 1501 (in Chinese).
李翼, 杨忠民. 金属学报, 2010, 46(12), 1501.
10 Liang Y, Shi Z Y, Liang Y L. Materials for Mechanical Engineering, 2013, 37(8), 19 (in Chinese).
梁宇, 石芷伊, 梁益龙. 机械工程材料, 2013, 37(8), 19.
11 Li W Q, Zhang X H, Gao N, et al. Journal of University of Science and Technology Beijing, 1990, 12(5), 437 (in Chinese).
李文卿, 张小红, 高宁, 等. 北京科技大学学报, 1990, 12(5), 437.
12 Gong W M, Yang C F, Zhang Y Q. Iron and Steel, 2005, 40(10), 63 (in Chinese).
龚维幂, 杨才福, 张永权. 钢铁, 2005, 40(10), 63.
13 Yang C F. Journal of Iron and Steel Research, 2020, 32(12), 1029 (in Chinese).
杨才福. 钢铁研究学报, 2020, 32(12), 1029.
14 Lai C B, Zhao Q S, Tan X Z, et al. Nonferrous Metals Science and Engineering, 2014, 5(6), 53 (in Chinese).
赖朝彬, 赵青松, 谭秀珍, 等. 有色金属科学与工程, 2014, 5(6), 53.
15 Ma J N, Yang C F, Wang R Z. Iron and Steel, 2015, 50(4), 63 (in Chinese).
马江南, 杨才福, 王瑞珍. 钢铁, 2015, 50(4), 63.
16 Yu S F, Lei Y, Xie M L, et al. Journal of Iron and Steel Research, 2005, 17(1), 47 (in Chinese).
余圣甫, 雷毅, 谢明立, 等. 钢铁研究学报, 2005, 17(1), 47.
17 Tian L M. Study of precipitates and intragranular ferrite in medium carbon V microalloyed steel. Master's Thesis, Jiangsu University, China, 2013 (in Chinese).
田林茂. 中碳含钒微合金钢中析出物及晶内铁素体的研究. 硕士学位论文, 江苏大学, 2013.
18 Yang C F, Zhang Y Q, Wang R Z. Metallurgical principle and application of vanadium steel, Metallurgical Industry Press, China, 2012, pp. 22 (in Chinese).
杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用, 冶金工业出版社, 2012, pp. 22.
19 Yong Q L. Secondary phases in steels, Metallurgical Industry Press, China, 2006, pp. 175 (in Chinese).
雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006, pp. 175.
20 Hui Y J, Pan H, Zhou N, et al. Acta Metallurgica Sinica, 2015, 51(12), 1481 (in Chinese).
惠亚军, 潘辉, 周娜, 等. 金属学报, 2015, 51(12), 1481.
21 Zhang F, Chen G. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2004, 40(4), 172 (in Chinese).
张峰, 陈刚. 理化检验(物理分册), 2004, 40(4), 172.
22 Fang X Y, Zhao Y X, Liu H W. Materials Science and Engineering A, 2017, 696, 299.
23 Liang Y, Xiang S, Liang Y L, et al. Materials Reports, 2017, 31(1), 77 (in Chinese).
梁宇, 向嵩, 梁益龙, 等. 材料导报, 2017, 31(1), 77.
[1] 王衍行, 李现梓, 韩韬, 肖雷, 何坤, 祖成奎. 高强高韧玻璃的研究进展[J]. 材料导报, 2022, 36(21): 20090229-7.
[2] 杜金平, 王衍飞, 刘荣军, 万帆. 铁弹畴转向增韧:应用于陶瓷涂层的一种潜在高温增韧机制[J]. 材料导报, 2022, 36(17): 21050180-10.
[3] 王斌, 孙顺平, 王洪金, 李小平, 雷卫宁. 电弧熔覆ZrO2颗粒增韧对硅化钼涂层的组织及力学性能的影响[J]. 材料导报, 2022, 36(13): 21040249-6.
[4] 常川川, 李菊, 张田仓, 郭德伦. 焊后热处理对高氧TC4/TC17钛合金线性摩擦焊接头组织及性能的影响[J]. 材料导报, 2021, 35(10): 10109-10113.
[5] 刘二伟, 贾文清, 薛飞, 范敏郁, 於旻, 余伟炜. 基于PCVN小试样评估主管道的动态断裂韧性研究[J]. 材料导报, 2020, 34(Z2): 418-422.
[6] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[7] 姚三成, 丁毅, 赵海, 江波, 刘学华, 方政. 中碳微合金钢的断裂韧性与显微组织的关系[J]. 材料导报, 2020, 34(Z1): 452-456.
[8] 文立伟, 余坤, 封桥桥, 宦华松. 缝合增强复合材料层合板层间断裂韧性研究[J]. 材料导报, 2020, 34(22): 22162-22166.
[9] 王宇, 曾伟, 韩靖, 戴光泽, 赵君文, 徐忠宣. 氮碳共渗对ER8车轮钢高温摩擦磨损性能的影响[J]. 材料导报, 2020, 34(18): 18119-18124.
[10] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[11] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[12] 曾伟, 王少杰, 韩靖, 张雪梅, 戴光泽, 赵君文. 预腐蚀对ER8车轮钢磨损行为的影响[J]. 材料导报, 2019, 33(24): 4152-4156.
[13] 李洪峰, 曲春艳, 王德志, 刘仲良, 顾继友, 张杨. 短切玻纤增强PEKK与BDM/DABPA共混体系固化反应动力学及断裂韧性[J]. 材料导报, 2018, 32(6): 971-976.
[14] 汪倡, 庞学佳, 高宗鸿, 刘金娜, 房永超, 崔秀芳, 刘二宝, 金国. YSZ纤维增强等离子喷涂Al2O3/8YSZ涂层耐磨性能研究[J]. 《材料导报》期刊社, 2018, 32(4): 563-568.
[15] 王凤彪, 张嘉易, 丁茹, 李银玉, 李丽丽, 陈松. 超声辅助微弧氧化Ti-13Nb-13Zr合金制备仿生涂层及其断裂力学性能*[J]. 《材料导报》期刊社, 2017, 31(16): 46-50.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed