Intragranular Ferrite in Medium Carbon Vanadium-containing Wheel Steels and Its Effect on Fracture Toughness
YAO Sancheng1,2,*, ZHAO Hai1,2, LIU Xuehua1,2, JIANG Bo1,2, ZOU Qiang1,2, XU Kang2,3
1 Technology Center, Ma’anshan Iron and Steel Co., Ltd., Ma’anshan 243003, Anhui, China 2 Anhui Technology Innovation Center of Rail Transit Key Components, Ma’anshan 243003, Anhui, China 3 Technology Center, Baowu Group Masteel Rail Transit Materials Technology Co., Ltd., Ma’anshan 243003, Anhui, China
Abstract: The effect of low undercooling pretreatment in austenite on microstructure, second phase and mechanical properties of a medium carbon vanadium-containing wheel steel was investigated by optical microscope, scanning electron microscope, transmission electron microscope, tensile test and fracture toughness test. The results show that the final main microstructure of the wheel steel undercooled within 860 — 800 ℃ after it has been fully austenitized at 935 ℃ is slightly varied. The pearlite interlamellar spacing is (131±7) nm, and the volume fraction of pro-eutectoid ferrite is (10.6±0.8)%. However, the number of nano-scale precipitates is directly related to the undercooling temperature, which affects the strength contribution of precipitation strengthening. In the range of 860—840 ℃, the undercooling pretreatment does not reduce the strength obviously, but it increases the average and minimum fracture toughness values by 10.9% — 14.2% and 22.1%— 31.8%, respectively. The strength sacrifice increases with the further decrease of undercooling temperature, so the matching between strength and toughness is unba-lanced. Due to the low undercooling pretreatment, the solid-solved vanadium is pre-precipitated in the form of V(C, N) second phase with a large size and semicoherent with the matrix in the original austenite grain. This phase induces the nucleation of intragranular ferrite (IGF) in the subsequent cooling phase transformation stage. The lower the undercooling temperature, the greater the number of IGFs, though the average IGF size slightly changes. The presence of IGF increases phase interface of the microstructure, and the resistance to crack propagation is further increased, thus resulting in higher fracture toughness at the macro level. The essence of the low undercooling pretreatment in austenite is to change the weighted contribution of the vanadium in precipitation strengthening, cooperating with the control of ferrite morphology distribution, which provides a new way to improve the matching between strength and toughness of medium carbon vanadium-containing wheel steels.
1 Sakamoto H, Toyama K, Hirakawa K. Materials Science and Engineering A, 2000, 285, 288. 2 Ekberg A, Kabo E. Wear, 2005, 258, 1288. 3 Wetenkamp H R, Kipp R M. Journal of Engineering for Industry, Tran-sactions of the ASME, 1978, 100, 363. 4 Wu S, Li X C, Shang C J, et al. Transactions of Materials and Heat Treatment, 2012, 33(7), 100 (in Chinese). 吴斯, 李秀程, 尚成嘉, 等. 材料热处理学报, 2012, 33(7), 100. 5 Li S J, Ren X C, Gao K W, et al. Journal of University of Science and Technology Beijing, 2011, 33(9), 1105 (in Chinese). 李胜军, 任学冲, 高克玮, 等. 北京科技大学学报, 2011, 33(9), 1105. 6 Gong S, Ren X C, Chen G, et al. Chinese Journal of Engineering, 2016, 38(4), 522 (in Chinese). 龚帅, 任学冲, 陈刚, 等. 工程科学学报, 2016, 38(4), 522. 7 Yao S C, Ding Y, Zhao H, et al. Materials Reports, 2020, 34(S1), 452 (in Chinese). 姚三成, 丁毅, 赵海, 等. 材料导报, 2020, 34(S1), 452. 8 Yao S C, Gong Y H, Zhao H, et al. Transactions of Materials and Heat Treatment, 2020, 41(2), 67 (in Chinese). 姚三成, 宫彦华, 赵海, 等. 材料热处理学报, 2020, 41(2), 67. 9 Li Y, Yang Z M. Acta Metallurgica Sinica, 2010, 46(12), 1501 (in Chinese). 李翼, 杨忠民. 金属学报, 2010, 46(12), 1501. 10 Liang Y, Shi Z Y, Liang Y L. Materials for Mechanical Engineering, 2013, 37(8), 19 (in Chinese). 梁宇, 石芷伊, 梁益龙. 机械工程材料, 2013, 37(8), 19. 11 Li W Q, Zhang X H, Gao N, et al. Journal of University of Science and Technology Beijing, 1990, 12(5), 437 (in Chinese). 李文卿, 张小红, 高宁, 等. 北京科技大学学报, 1990, 12(5), 437. 12 Gong W M, Yang C F, Zhang Y Q. Iron and Steel, 2005, 40(10), 63 (in Chinese). 龚维幂, 杨才福, 张永权. 钢铁, 2005, 40(10), 63. 13 Yang C F. Journal of Iron and Steel Research, 2020, 32(12), 1029 (in Chinese). 杨才福. 钢铁研究学报, 2020, 32(12), 1029. 14 Lai C B, Zhao Q S, Tan X Z, et al. Nonferrous Metals Science and Engineering, 2014, 5(6), 53 (in Chinese). 赖朝彬, 赵青松, 谭秀珍, 等. 有色金属科学与工程, 2014, 5(6), 53. 15 Ma J N, Yang C F, Wang R Z. Iron and Steel, 2015, 50(4), 63 (in Chinese). 马江南, 杨才福, 王瑞珍. 钢铁, 2015, 50(4), 63. 16 Yu S F, Lei Y, Xie M L, et al. Journal of Iron and Steel Research, 2005, 17(1), 47 (in Chinese). 余圣甫, 雷毅, 谢明立, 等. 钢铁研究学报, 2005, 17(1), 47. 17 Tian L M. Study of precipitates and intragranular ferrite in medium carbon V microalloyed steel. Master's Thesis, Jiangsu University, China, 2013 (in Chinese). 田林茂. 中碳含钒微合金钢中析出物及晶内铁素体的研究. 硕士学位论文, 江苏大学, 2013. 18 Yang C F, Zhang Y Q, Wang R Z. Metallurgical principle and application of vanadium steel, Metallurgical Industry Press, China, 2012, pp. 22 (in Chinese). 杨才福, 张永权, 王瑞珍. 钒钢冶金原理与应用, 冶金工业出版社, 2012, pp. 22. 19 Yong Q L. Secondary phases in steels, Metallurgical Industry Press, China, 2006, pp. 175 (in Chinese). 雍岐龙. 钢铁材料中的第二相, 冶金工业出版社, 2006, pp. 175. 20 Hui Y J, Pan H, Zhou N, et al. Acta Metallurgica Sinica, 2015, 51(12), 1481 (in Chinese). 惠亚军, 潘辉, 周娜, 等. 金属学报, 2015, 51(12), 1481. 21 Zhang F, Chen G. Physical Testing and Chemical Analysis (Part A: Physical Testing), 2004, 40(4), 172 (in Chinese). 张峰, 陈刚. 理化检验(物理分册), 2004, 40(4), 172. 22 Fang X Y, Zhao Y X, Liu H W. Materials Science and Engineering A, 2017, 696, 299. 23 Liang Y, Xiang S, Liang Y L, et al. Materials Reports, 2017, 31(1), 77 (in Chinese). 梁宇, 向嵩, 梁益龙, 等. 材料导报, 2017, 31(1), 77.