Please wait a minute...
材料导报  2023, Vol. 37 Issue (21): 22050291-7    https://doi.org/10.11896/cldb.22050291
  金属与金属基复合材料 |
UNS S32750双相不锈钢焊接热影响区微观组织演变
张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永*
中国民航大学航空工程学院,天津 300300
HAZ Microstructure Evolution of UNS S32750 Duplex Stainless Steel
ZHANG Zhiqiang, CHU Haoran, ZHANG Tiangang, LU Xuecheng, ZHANG Yuhang, GUO Zhiyong*
School of Aeronautical Engineering, Civil Aviation University of China, Tianjin 300300, China
下载:  全 文 ( PDF ) ( 16343KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 焊接是双相不锈钢推广应用不可或缺的加工制造环节,但是目前对双相不锈钢多层多道焊接过程中热影响区的微观组织演变行为仍不清晰。以Gleeble3500热模拟试验机为平台,采用热力学方法和先进的组织表征技术,研究了高温铁素体化以及随后的再加热过程对UNS S32750双相不锈钢焊接热影响区微观组织的影响规律。结果表明,热影响区经铁素体化后,铁素体和奥氏体不再以条带状交替存在,而是转变为粗大、等轴状的亚稳态铁素体和不同类型的一次奥氏体(γ1),并且奥氏体含量显著降低。同时,在铁素体晶粒内、铁素体与铁素体晶粒边界以及铁素体与奥氏体相界处析出大量的Cr2N。此外,后续焊道的再加热过程以及再加热温度对热影响区的微观组织特征具有显著影响。随着再加热温度从900 ℃升高至1 200 ℃,奥氏体含量逐渐增加,但Cr2N的析出倾向明显降低。二次奥氏体(γ2)更易于在1 000 ℃再加热时析出,并且与Cr2N呈现协助析出行为。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张志强
楚昊然
张天刚
路学成
张宇航
郭志永
关键词:  双相不锈钢  热影响区  组织演变  二次相    
Abstract: Welding, as a common manufacturing method, is an indispensable part of the promotion and application of duplex stainless steel (DSS). However, the microstructure evolution behavior of the heat affected zone (HAZ) during multilayer and multipass welding of duplex stainless steel is still unclear. The influence of ferritization and reheating process on microstructure evolution at HAZ of UNS S32750 duplex stainless steel welding was studied by Gleeble3500 thermal simulator, thermodynamic methods and microstructure characterization techniques. The results show that the alternating bands of ferrite and austenite were transformed into coarse and equiaxed metastable ferrite as well as different types of primary austenite (γ1) after ferritization of HAZ, and the austenite content was significantly reduced. In addition, a large amount of Cr2N was precipitated within the ferrite grain, at the ferrite and ferrite grain boundary, as well as in the ferrite and austenite phase boundary. Furthermore, the subsequent reheating temperature after ferritization had a significant effect on the microstructure of the HAZ. With the increase of reheating temperature in the range from 900 ℃ to 1 200 ℃, the austenite gradually increased. At the same time, the higher reheating temperature can also decrease the precipitation tendency of Cr2N. In addition, secondary austenite (γ2) is easily precipitated at the reheating temperature of 1 000 ℃. Furthermore, γ2 and Cr2N exhibited an obvious assisted precipitation behavior.
Key words:  duplex stainless steel    heat affected zone    microstructure evolution    secondary precipitate
出版日期:  2023-11-10      发布日期:  2023-11-10
ZTFLH:  TG142.1  
基金资助: 国家自然科学基金(51905536);天津市科技计划项目(21YDTPJC00430);天津市自然科学基金(22JCYBJC01280);中央高校基本科研业务费(3122023039)
通讯作者:  *郭志永,中国民航大学航空工程学院讲师、硕士研究生导师。2012年河北工业大学机械设计制造及其自动化专业本科毕业,2014年、2018年于天津大学机械工程专业分别获得硕士和博士学位,而后到中国民航大学工作至今。目前主要从事电弧增材制造技术与装备方面的研究工作。发表论文10余篇,包括Mechanical Systems and Signal Processing、Applied Surface Science、Precision Engineering、Robotics and Computer-Integrated Manufactu-ring 等。zyguo@cauc.edu.cn   
作者简介:  张志强,中国民航大学航空工程学院副教授、硕士研究生导师。2012年河北工业大学材料加工工程专业硕士毕业,2018年天津大学材料加工工程专业博士毕业后到中国民航大学工作至今。目前主要从事高性能焊接、增材制造、表面技术等方面的研究工作。发表论文50余篇,包括Corrosion Science、Applied Surface Science、Materials & Design、Tribology International、Surface & Coatings Technology、Journal of Manufacturing Processes等。
引用本文:    
张志强, 楚昊然, 张天刚, 路学成, 张宇航, 郭志永. UNS S32750双相不锈钢焊接热影响区微观组织演变[J]. 材料导报, 2023, 37(21): 22050291-7.
ZHANG Zhiqiang, CHU Haoran, ZHANG Tiangang, LU Xuecheng, ZHANG Yuhang, GUO Zhiyong. HAZ Microstructure Evolution of UNS S32750 Duplex Stainless Steel. Materials Reports, 2023, 37(21): 22050291-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22050291  或          http://www.mater-rep.com/CN/Y2023/V37/I21/22050291
1 Li H W, Zhao Z Y, Xue R D. Transactions of the China Welding Institution, 2022, 43(2), 20 (in Chinese).
栗宏伟, 赵志毅, 薛润东. 焊接学报, 2022, 43(2), 20.
2 Gao Z Q, Jing H Y, Xu L Y, et al. Transactions of the China Welding Institution, 2019, 40(7), 143 (in Chinese).
高站起, 荆洪阳, 徐连勇, 等. 焊接学报, 2019, 40(7), 143.
3 Dandekar T R, Gupta A, Khatirkar R K, et al. Transactions of the Indian Institute of Metals, 2021, 74, 2267.
4 Zhang Z Q, Jing H Y, Xu L Y, et al. Journal of Materials Heat Treatment, 2020, 41(5), 15 (in Chinese).
张志强, 荆洪阳, 徐连勇, 等. 材料热处理学报, 2020, 41(5), 15.
5 Yang Y Z, Wang Z Y, Tan H, et al. Corrosion Science, 2012, 65, 472.
6 Kim H J, Jeon S H, Kim S T, et al. Corrosion Science, 2014, 87, 60.
7 Chehuan T, Dreilich V, de Assis K S, et al. Corrosion Science, 2014, 86, 268.
8 Zhang Z Q, Jing H Y, Xu L Y, et al. Applied Surface Science, 2018, 435, 352.
9 Taban E, Kaluc E. Welding in the World, 2011, 55, 48.
10 Knyazeva M, Pohl M. Metallography, Microstructure, and Analysis, 2013, 5(2), 343.
11 Ferro P, Fabrizi A, Bonollo F, et al. Acta Metallurgica Slovaca, 2021, 27(2), 57.
12 Zhang Z Q, Jing H Y, Xu L Y, et al. Transactions of the China Welding Institution, 2017, 38(5), 79 (in Chinese).
张志强, 荆洪阳, 徐连勇, 等. 焊接学报, 2017, 38(5), 79.
13 Zhang Z Q, Jing H Y, Xu L Y, et al. Applied Surface Scienc, 2017, 404(15), 110.
14 Ramirez A J, Lippold J C, Brandi S D. Metallurgical and Materials Transactions A, 2003, 34(8), 1575.
15 Hosseini V A, Bermejo M, Gårdstam J, et al. Welding in the World, 2016, 60(2), 233.
16 Zhang Z Q, Jing H Y, Xu L Y, et al. Applied Surface Science, 2017, 26(1), 134.
17 Zhang Z Q, Jing H Y, Xu L Y, et al. Corrosion Science, 2017, 120, 194.
[1] 朱艳春, 邵珠彩, 罗媛媛, 黄志权, 牛勇, 秦建平. Ti2AlNb合金应变速率敏感指数和应变硬化指数与变形参数和晶粒尺寸关系研究[J]. 材料导报, 2023, 37(5): 21070259-6.
[2] 罗翔, 米振莉, 吴彦欣, 杨永刚, 江海涛, 胡宽辉. 退火温度对LH800空冷强化钢组织与力学性能的影响[J]. 材料导报, 2023, 37(3): 21080047-6.
[3] 刘泽辉, 杨银辉, 张凤珍, 王刘行. 大变形热压缩18.7Cr-5.8Mn-1.0Ni-0.23N节镍型双相不锈钢的晶间腐蚀行为研究[J]. 材料导报, 2023, 37(12): 22010176-10.
[4] 李朝阳, 黄光杰, 曹玲飞, 曹宇, 林林. 升温速率对AA2060铝锂合金中间形变热处理微观组织的影响[J]. 材料导报, 2022, 36(7): 21020008-7.
[5] 贾红敏, 常剑秀. 定向凝固镁合金的研究进展及应用前景[J]. 材料导报, 2022, 36(6): 20060149-7.
[6] 杨宇龙, 贾潇, 朱伏先, 王平. 大线能量焊接用钢粗晶热影响区针状铁素体形成过程控制技术的研究进展[J]. 材料导报, 2022, 36(5): 20060056-11.
[7] 吴敏, 刘健, 罗霞, 刘允中, 蔡仁烨, 徐伟, 陈晓. Al-Cu-Mg合金粉末在半固态的组织演变及晶粒粗化机制[J]. 材料导报, 2022, 36(24): 22030231-7.
[8] 杨文涛, 何鹏飞, 刘明, 周永欣, 王海斗, 白宇, 李青. 热处理工艺对铝硅合金显微组织和性能影响的研究现状[J]. 材料导报, 2022, 36(11): 20080038-9.
[9] 袁傲明, 任学平. 固溶时效对1Cr21Ni5Ti双相不锈钢组织的影响[J]. 材料导报, 2021, 35(Z1): 443-446.
[10] 刘伟, 吴远志, 邓彬, 刘安民, 刘巍, 孙乾, 叶拓. 时效工艺对6061铝合金力学性能各向异性的影响及微观组织研究[J]. 材料导报, 2021, 35(4): 4134-4138.
[11] 王永金, 张应超, 宋仁伯. 梯度结构半固态9Cr18不锈钢的制备与显微组织演变[J]. 材料导报, 2021, 35(2): 2120-2124.
[12] 曾泽瑶, 杨银辉, 曹建春, 倪珂, 潘晓宇. 18Cr-3Mn-1Ni-0.22N节镍型双相不锈钢热压缩再结晶行为研究[J]. 材料导报, 2021, 35(18): 18163-18169.
[13] 刘贵民, 杜林飞, 闫涛, 惠阳. Cu-Al2O3复合粉末颗粒原位生成机制探究[J]. 材料导报, 2020, 34(8): 8031-8035.
[14] 黄晓锋, 魏浪浪, 杨剑桥, 张乔乔, 尚文涛, 李旭娇. 半固态等温热处理对Mg-7Zn-1Cu-0.3V镁合金非枝晶组织的影响[J]. 材料导报, 2020, 34(14): 14116-14121.
[15] 何翠云, 莫文锋, 罗兵辉, 柏镇海, 张鑫. 均匀化处理对2A12铝合金组织及性能的影响[J]. 材料导报, 2020, 34(12): 12083-12087.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed