Please wait a minute...
材料导报  2023, Vol. 37 Issue (20): 22040288-7    https://doi.org/10.11896/cldb.22040288
  高分子与聚合物基复合材料 |
基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能
陈飞1, 李先延2, 高家贵3, 王永俊4, 张林艳1,*, 封基良5
1 云南大学建筑与规划学院,昆明 650000
2 云南宾南高速公路有限公司,云南 大理 671000
3 云南省交通投资建设集团有限公司,昆明 650000
4 昭通市昭乐高速公路投资开发有限公司,云南 昭通 657000
5 云南畅坦科技有限公司,昆明 650000
Evaluation of Crack Resistance of Post-doping Warm-mix Epoxy Asphalt Mixture Based on IDEAL-CT Test
CHEN Fei1, LI Xianyan2, GAO Jiagui3, WANG Yongjun4, ZHANG Linyan1,*, FENG Jiliang5
1 School of Architecture and Planning, Yunnan University, Kunming 650000, China
2 Yunnan Binnan Expressway Co., Ltd., Dali 671000, Yunnan, China
3 Yunnan Communications Investment and Construction Group Co., Ltd., Kunming 650000, China
4 Zhaotong Zhaole Expressway Investment and Development Co., Ltd., Zhaotong 657000, Yunnan, China
5 Yunnan Changtan Technology Co., Ltd., Kunming 650000, China
下载:  全 文 ( PDF ) ( 7668KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 薄层环氧沥青在相对经济的条件下可实现路表长寿命,且后掺法工艺克服了其施工要求苛刻而导致应用受限的难题,可实现规模化应用,具有广阔的应用前景。为评价室内模拟后掺法工艺制备的环氧沥青混合料抗裂性能,采用沥青间接拉伸开裂(IDEAL-CT)试验,以最大荷载、最大位移、荷载-位移曲线75%最大荷载处斜率绝对值(m75)和抗裂指数(CT)为评价指标,研究了纤维和沥青种类、公称最大粒径、沥青用量和空隙率对混合料抗裂性能的影响规律,并探究其抗裂性能评价指标的合理性。结果表明,在环氧沥青混合料中添加纤维、增加油量可延缓裂纹的发展,提高其抗裂性能,其中玄武岩纤维抗裂性能表现最优;环氧沥青混合料抗裂性能与集料公称最大粒径呈负相关,同时其骨架密实型混合料的抗裂性能优于悬浮密实型;混合料变密实,抗变形能力下降,裂纹扩展速度加快,抗裂性能降低;与SBS改性沥青相比,环氧沥青抵抗荷载开裂的能力较强,但抗裂缝延展能力较差,在可能出现变形大或不均匀沉降的结构上应用,应注意防止裂缝发生。评价指标上,最大位移对环氧沥青混合料抗裂性能评价敏感性差,不适合用于评价热固性沥青材料的抗裂性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈飞
李先延
高家贵
王永俊
张林艳
封基良
关键词:  温拌环氧沥青  后掺法  抗裂性能  影响因素  IDEAL-CT    
Abstract: Thin-layer epoxy asphalt can achieve long-life pavement under relatively economical conditions, and the post-doping process overcomes the problem of limited application due to its harsh construction requirements, can achieve large-scale application and has broad application prospects. The crack resistance of the epoxy asphalt mixture prepared by the indoor simulated post-doping method was evaluated by the asphalt indirect tensile cracking test (IDEAL-CT). Taking the maximum load, maximum displacement, absolute value of the slope of the load-displacement curve at 75% of the maximum load (m75), and crack resistance index (CT) as the evaluation indicators, the effect of fiber and asphalt types, the nominal maximum size of aggregate, asphalt dosages and void on the crack resistance of the mixture was investigated, and the rationality of the evaluation index of its crack resistance was explored. The results show that adding fiber and increasing oil content to epoxy asphalt mixture can delay the development of cracks, and improve its crack resistance, among which basalt fiber has the best crack resistance; the performance is negatively correlated with the nominal maximum size of aggregate. At the same time, the crack resistance of the dense skeleton-type mixture is better than that of the suspension dense type; the mixture becomes denser, the deformation resistance is reduced, the crack propagation speed is accelerated, and the crack resistance is reduced; compared with SBS-modified asphalt, epoxy asphalt has stronger resistance to load cracking, but poorer resistance to crack extension. When applied to structures that may experience large deformation or uneven settlement, care should be taken to prevent cracks from occurring. In terms of evaluation indicators, the maximum displacement has poor sensitivity to the evaluation of the crack resistance of epoxy asphalt mixtures, which is not suitable for evaluating the crack resistance of thermosetting asphalt materials.
Key words:  warm-mix epoxy asphalt    post-doping method    crack resistance    influencing factors    IDEAL-CT
出版日期:  2023-10-25      发布日期:  2023-10-19
ZTFLH:  U416.2  
基金资助: 云南省交通运输厅联合攻关科技项目(云交科教[2020]113号)
通讯作者:  *张林艳,博士,副教授,硕士研究生导师。1997年获北京航空航天大学飞机设计专业工学学士学位。现就职于云南大学建筑与规划学院土木工程系。目前,研究方向为道路新材料研发与应用、路面结构分析、路面施工控制。近年来,主持或参与国家级、省市级、校级项目20余项,发表文章20余篇。zhangly@ynu.edu.cn   
作者简介:  陈飞,2022年6月毕业于云南大学,获工学硕士学位,现为东南大学交通学院博士研究生,主要研究方向为道路新材料。
引用本文:    
陈飞, 李先延, 高家贵, 王永俊, 张林艳, 封基良. 基于IDEAL-CT试验评价后掺法温拌环氧沥青混合料抗裂性能[J]. 材料导报, 2023, 37(20): 22040288-7.
CHEN Fei, LI Xianyan, GAO Jiagui, WANG Yongjun, ZHANG Linyan, FENG Jiliang. Evaluation of Crack Resistance of Post-doping Warm-mix Epoxy Asphalt Mixture Based on IDEAL-CT Test. Materials Reports, 2023, 37(20): 22040288-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040288  或          http://www.mater-rep.com/CN/Y2023/V37/I20/22040288
1 Yu H Y, Ma T, Wang D W, et al. China Journal of Highway and Transport, 2020, 33(10), 1(in Chinese).
于华洋, 马涛, 王大为, 等. 中国公路学报, 2020, 33(10), 1.
2 Wang C L, Fu Y, Chen Q, et al. Materials Reports, 2018, 32(17), 2992(in Chinese).
王朝辉, 傅一, 陈谦, 等. 材料导报, 2018, 32(17), 2992.
3 Yan Y, Guo D J, Feng J L, et al. Journal of Highway and Transportation Research and Development, 2016, 33(9), 69(in Chinese).
晏永, 郭大进, 封基良, 等. 公路交通科技, 2016, 33(9), 69.
4 Qian Z D, Lu Q. Construction & Building Materials, 2015, 77, 110.
5 Wu W J, Liu P, Tan Q, et al. Highway, 2021, 66(12), 60(in Chinese).
吴文军, 刘攀, 谭乔, 等. 公路, 2021, 66(12), 60.
6 Feng G P. Development of epoxy asphalt for steel bridge deck pavement and study mixture performance. Master’s Thesis, Chang’an University, China, 2019(in Chinese).
冯国平. 钢桥面铺装环氧沥青的开发及混合料性能研究. 硕士学位论文, 长安大学, 2019.
7 Zhang L Y, Bai Y, Sun W Y, et al. Technology of Highway and Transport, 2020, 36(5), 44(in Chinese).
张林艳, 柏耘, 孙武云, 等. 公路交通技术, 2020, 36(5), 44.
8 Ma Y, Sun W Y, Zhao Y B, et al. Technology of Highway and Transport, 2021, 37(5), 17(in Chinese).
马永, 孙武云, 赵雁宾, 等. 公路交通技术, 2021, 37(5), 17.
9 Feng Z J, Guo D J, Zhang L Y, et al. Journal of Materials Science and Engineering, 2020, 38(4), 633(in Chinese).
封志佼, 郭大进, 张林艳, 等. 材料科学与工程学报, 2020, 38(4), 633.
10 Huang W D, Zhang J W, Lyu Q, et al. Journal of Tongji University(Natural Science Edition), 2020, 48(11), 1588(in Chinese).
黄卫东, 张家伟, 吕泉, 等. 同济大学学报(自然科学版), 2020, 48(11), 1588.
11 Zheng W, Cai L T, Wei K J. Journal of Wuhan University of Technology, 2009, 31(16), 40(in Chinese).
郑卫, 蔡伦涛, 魏开家. 武汉理工大学学报, 2009, 31(16), 40.
12 Grazulyte J, Vaitkus A, Andrejevas V, et al. Baltic Journal of Road & Bridge Engineering, 2017, 12(2), 135.
13 Chen F, Zhang L Y, Feng J L, et al. Materials Reports, 2021, 35(S2), 127(in Chinese).
陈飞, 张林艳, 封基良, 等. 材料导报, 2021, 35(S2), 127.
14 Bennert T, Haas E, Wass E. Journal of the Transportation Research Record, 2018, 2672(28), 394.
15 Zhou F J, Im S, Sun L J, et al. Road Materials and Pavement Design, 2017, 18(S4), 405.
16 Im S, Zhou F J. Journal of the Transportation Research Board, 2017, 2631(1), 1.
17 Shanbara H K, Ruddock F, Atherton W. Construction and Building Materials, 2018, 172, 166.
18 Fakhri M, Hosseini S A. Construction and Building Materials, 2017, 134(MAR 1), 626.
19 Gao D Y, Huang C S. China Journal of Highway and Transport, 2016, 29(2), 8(in Chinese).
高丹盈, 黄春水. 中国公路学报, 2016, 29(2), 8.
20 Fallah S, Khodaii A. Geotextiles & Geomembranes, 2015, 43(3), 216.
21 Hou W. Journal of Chongqing Jiaotong University(Natural Science Edition), 2010, 29(6), 904(in Chinese).
侯伟. 重庆交通大学学报(自然科学版), 2010, 29(6), 904.
22 Zhu Y F, Si C D, Qiao Y N. Materials Reports, 2021, 35(6), 6086.
朱月风, 司春棣, 乔亚宁, 等. 材料导报, 2021, 35(6), 6086.
[1] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[2] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[3] 王兰喜, 何延春, 王虎, 吴春华, 李林. 石墨烯导热纸研究进展[J]. 材料导报, 2023, 37(3): 20110183-9.
[4] 吴应雄, 郑新颜, 黄伟, 郑祥浴, 陈宝春. 超高性能混凝土-既有普通混凝土界面粘结性能研究综述[J]. 材料导报, 2023, 37(16): 21120057-11.
[5] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[6] 王歧山, 何川, 陈旭. 金属工程材料腐蚀疲劳行为研究进展[J]. 材料导报, 2023, 37(1): 20100223-9.
[7] 王俊辉, 黄悦, 杨国涛, 魏琦安, 刘文卓. 再生混凝土抗压性能研究进展[J]. 材料导报, 2022, 36(Z1): 21100033-9.
[8] 林欢, 石启亮, 蔡利海, 刘文言, 李万利. 聚硼硅氧烷剪切增稠凝胶的制备影响因素及其在不同温度下的流变性能研究[J]. 材料导报, 2022, 36(Z1): 21070206-6.
[9] 虞将苗, 马远跃, 张园, 于华洋, 邹桂莲. 高粘SBS改性乳化沥青就地冷再生混合料抗裂性能评价[J]. 材料导报, 2022, 36(16): 22040412-7.
[10] 刘芳, 王旗, 张翛, 彭义军, 刘晓东. 老化对废机油再生沥青流变特性的影响及机理[J]. 材料导报, 2022, 36(16): 22040405-6.
[11] 赵晓雯, 张检梅, 陈徐东, 季韬. 生石灰-碳酸钠掺量和矿渣活性对碱矿渣砂浆抗裂性能的影响[J]. 材料导报, 2022, 36(16): 21030241-5.
[12] 周志刚, 周扬, 刘智仁. 透水沥青混合料动态模量影响因素分析[J]. 材料导报, 2022, 36(13): 21010221-7.
[13] 向鑫, 杨飞龙, 张桂凯, 胡立, 宋雅琪, 朱力桂. 管件内壁电沉积涂层技术的研究进展[J]. 材料导报, 2022, 36(13): 20100118-7.
[14] 杨医博, 岳晓东, 姚丁语, 张迪, 郭文瑛, 王恒昌. 碱渣内养护剂对高强高性能混凝土自收缩及早期抗裂性能的影响及机理分析[J]. 材料导报, 2022, 36(12): 20020019-6.
[15] 李世杰, 黄慧娟, 尚莉莉, 马建峰, 马千里, 刘杏娥. 活性炭净化室内甲醛的研究进展[J]. 材料导报, 2021, 35(z2): 75-80.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed