Synthesis of Co-Ni-Mo Ternary Nanomaterials and Study on Their Catalytic Hydrogen Production from Ammonia Borane
LIN Luhe1, ZOU Aihua1,2,*, KANG Zhibing1, GUO Hao3, WANG Jie3
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China 3 Jiangxi Hongdu Aviation Industry Group Company Ltd., Nanchang 330001, China
Abstract: Ammonia borane (AB: NH3BH3) is a new type of hydrogen storage material. Low cost and high efficiency catalyst is the key to the realization of hydrolytic hydrogen production using amborane as chemical hydrogen storage material. Co-Ni-Mo nanoparticles(NPs)was successfully prepared by one-step co-reduction method with sodium borohydride (NaBH4) as reducing agent without carrier, and its catalytic performance for hydrogen production from NH3BH3 hydrolysis was studied. The results showed that (Co0.5Ni0.5) 0.9Mo0.1NPs had the best catalytic effect, and the TOF value was 7.94 mol(H2)·mol(metal)-1min-1, and the activation energy was 46.91 kJ/mol, which was lower than the reported activation energy of non-noble metal catalyst. Since Co and Ni are magnetic materials, magnets can be used to separate the catalyst from the solution, so as to facilitate recycling. After five cycles of testing, the catalytic activity of Co-Ni-Mo NPs reaches 68% of the initial activity, which has good stability and can be conducive to practical application.
林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
LIN Luhe, ZOU Aihua, KANG Zhibing, GUO Hao, WANG Jie. Synthesis of Co-Ni-Mo Ternary Nanomaterials and Study on Their Catalytic Hydrogen Production from Ammonia Borane. Materials Reports, 2023, 37(16): 21120005-6.
1 Xiao G P, Qiao W J, Wang L B, et al. Journal of Fuel Chemistry and Technology, 2020, 48(2),213(in Chinese). 肖国鹏, 乔韦军, 王丽宝, 等. 燃料化学学报, 2020, 48(2), 213. 2 Zhang J, Dong Y N, Liu Q X, et al. International Journal of Hydrogen Energy, 2019, 44(57), 30226. 3 Lu P J, Cai F F, Zang J, et al. Journal of Fuel Chemistry and Technology, 2019, 47(7), 791(in Chinese). 卢培静, 蔡夫锋, 张军,等. 燃料化学学报, 2019, 47(7), 791. 4 Wu H, Wu M, Wang B Y,et al. Journal of Energy Chemistry, 2020, 48(9), 43. 5 Li L L, Fan S S, Chen Q X, et al. Energy Storage Science and Technology, 2018, 7(4),586(in Chinese). 李璐伶,樊栓狮,陈秋雄,等. 储能科学与技术, 2018, 7(4),586. 6 Akbayrak S, Ozkar S. International Journal of Hydrogen Energy, 2018, 43(40), 18592. 7 Yao Q L, Lu Z H, Huang W, et al. Journal of Materials Chemistry A, 2016, 4(22), 8579. 8 Uzundurukan A, Devrim Y. International Journal of Hydrogen Energy, 2019, 44(49), 26773. 9 Zhou L M, Meng J, Li P, et al. Materials Horizons, 2017, 4(2), 268. 10 Chen W Y, Li D L, Wang Z J, et al. Aiche Journal, 2017, 63(1), 60. 11 Tonbul Y, Akbayrak S, Özkar S. Journal of Colloid and Interface Science, 2019, 553, 581. 12 Akbayrak S, Tonbul Y, Özkar S. Applied Catalysis B: Environmental, 2016, 198, 162. 13 Zou H T, Zhang S L, Hong X L, et al. Journal of Alloys and Compounds, 2020, 835, 155426. 14 Du X Q, Tan S Y, Cai P, et al. Journal of Materials Chemistry A, 2016, 4(38), 14572. 15 Yang C L, Men Y N, Xu Y Z, et al. ChemPlusChem, 2019, 84(4), 382. 16 Zheng H C, Feng K, Shang Y P, et al. Inorganic Chemistry Frontiers, 2018, 5(5), 1180. 17.Yang X, Li Q L, Li L L, et al. Journal of Power Sources, 2019, 431, 135. 18 Zhang J X, Li G H, Gan S P, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(2),241(in Chinese). 翟佳欣, 李国华, 甘思平,等. 无机化学学报, 2020, 36(2), 241. 19 Yan J M, Zhang X B, Shioyama H, et al. Journal of Power Sources, 2010, 195(4), 1091. 20 Yang X, Li Q L, Li L L, et al. Journal of Power Sources, 2019, 431, 135. 21 Guo L L, Gu X J, Kang K, et al. Journal of Materials Chemistry A, 2015, 3(45), 22807. 22 Yen H A, Seo Y B, Kallaguine S, et al. ACS Catalysis, 2015, 5(9), 5505. 23 Feng W Q, Yang L, Cao N, et al. International Journal of Hydrogen Energy, 2014, 39(7), 3371. 24 Yang K K, Yao Q L, Huang W, et al. International Journal of Hydrogen Energy, 2017, 42(10), 6840. 25 Hong Y, Long K, Tao L, et al. Chinese Chemical Letters, 2017, 28(12),2180. 26 Yang K. Synthesis and catalytic performance of Mo promoted Cu-based nanomaterials. Master's Thesis, Jiangxi Normal University,China, 2017, (in Chinese). 杨昆. 钼增强铜基纳米材料的合成及其催化性能研究.硕士学位论文, 江西师范大学, 2017. 27 Yao Q L, Lu Z H, Wang Y Q, et al. Journal of Physical Chemistry C, 2015,119(25), 14167. 28 Akbayrak S, Özçifçi Z, Tabak A. Biomass and Bioenergy, 2020, 138(2),105589. 29 Akbayrak S, Taneroglu Ozkar S. New Journal of Chemistry, 2017, 41(14), 6546. 30 Zacho S L, Mielby J, Kegnæs S. Catalysis Science & Technology, 2018, 8(18), 4741. 31 Wen M, Sun B L, Zhou B, et al. Journal of Materials Chemistry, 2012, 22, 11988. 32 Rachiero G P, Demirci U B, Miele P. International Journal of Hydrogen Energy, 2011, 36, 7051. 33 Figen A K. International Journal of Hydrogen Energy, 2013, 38, 9186. 34 Xu Q, Chandra M. Journal of Power Sources, 2006, 163(1), 364. 35 Du Y S, Cao N, Yang L, et al. New Journal of Chemistry, 2013, 37(10),3035. 36 Wang Q T, Zhang Z, Liu J, et al. Materials Chemistry and Physics, 2017, 204, 58. 37 Zahmakiran M, Durap F, Özkar S. International Journal of Hydrogen Energy, 2010, 35(1), 187. 38 Rakap M, ÖZkar S. International Journal of Hydrogen Energy, 2010, 35(8), 3341. 39 Bulut A, Yurderi M, ErtasI· E, et al. Applied Catalysis B: Environmental, 2016, 180, 121. 40 Paladini M, Arzac G M, Godinho V, et al. Applied Catalysis B Environmental, 2014, 158, 400. 41 Li Z, Li H L, Wang L, et al. International Journal of Hydrogen Energy, 2014, 39(27), 14935. 42 Meng X Y, Yang L, Cao N, et al. ChemPlusChem, 2014, 79(2), 325.