Please wait a minute...
材料导报  2023, Vol. 37 Issue (16): 21120005-6    https://doi.org/10.11896/cldb.21120005
  无机非金属及其复合材料 |
Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究
林路贺1, 邹爱华1,2,*, 康志兵1, 郭浩3, 汪杰3
1 南昌航空大学材料科学与工程学院,南昌 330063
2 江西师范大学化学化工学院,南昌 330022
3 江西洪都航空工业集团有限责任公司,南昌 330001
Synthesis of Co-Ni-Mo Ternary Nanomaterials and Study on Their Catalytic Hydrogen Production from Ammonia Borane
LIN Luhe1, ZOU Aihua1,2,*, KANG Zhibing1, GUO Hao3, WANG Jie3
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
2 School of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
3 Jiangxi Hongdu Aviation Industry Group Company Ltd., Nanchang 330001, China
下载:  全 文 ( PDF ) ( 9136KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氨硼烷(AB: NH3BH3)是一种新型的储氢材料,低成本、高效率的催化剂是实现以氨硼烷为化学储氢材料的水解产氢的关键。本工作采用一步共还原法,以硼氢化钠(NaBH4)作为还原剂,在无载体的情况下,成功制备出Co-Ni-Mo纳米颗粒(NPs),并对其催化NH3BH3水解制氢性能进行了研究。研究表明,(Co0.5Ni0.5)0.9Mo0.1 NPs的催化效果最佳,其转化频率(TOF)值为7.94 mol(H2)·mol(metal)-1·min-1,活化能为46.91 kJ/mol,低于已报道过的非贵金属催化剂的反应活化能值。Co和Ni是磁性材料,可以使用磁铁让催化剂和溶液分离,从而方便回收利用,Co-Ni-Mo NPs在五次循环测试后,其催化活性降至初始活性的68%,拥有良好的稳定性,可利于实际应用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林路贺
邹爱华
康志兵
郭浩
汪杰
关键词:  水解制氢  氨硼烷  催化剂  Co-Ni-Mo    
Abstract: Ammonia borane (AB: NH3BH3) is a new type of hydrogen storage material. Low cost and high efficiency catalyst is the key to the realization of hydrolytic hydrogen production using amborane as chemical hydrogen storage material. Co-Ni-Mo nanoparticles(NPs)was successfully prepared by one-step co-reduction method with sodium borohydride (NaBH4) as reducing agent without carrier, and its catalytic performance for hydrogen production from NH3BH3 hydrolysis was studied. The results showed that (Co0.5Ni0.5) 0.9Mo0.1NPs had the best catalytic effect, and the TOF value was 7.94 mol(H2)·mol(metal)-1min-1, and the activation energy was 46.91 kJ/mol, which was lower than the reported activation energy of non-noble metal catalyst. Since Co and Ni are magnetic materials, magnets can be used to separate the catalyst from the solution, so as to facilitate recycling. After five cycles of testing, the catalytic activity of Co-Ni-Mo NPs reaches 68% of the initial activity, which has good stability and can be conducive to practical application.
Key words:  hydrolytic dehydrogenation    ammonia borane    catalyst    Co-Ni-Mo
出版日期:  2023-08-25      发布日期:  2023-08-14
ZTFLH:  O643.36  
基金资助: 江西省博后择优项目(2017KY45);博士启动金(EA201801216)
通讯作者:  *邹爱华,南昌航空大学副教授、硕士研究生导师。2016年6月于南京航空航天大学获得工学博士学位。主要研究方向:化学储氢材料、功能复合材料、热界面材料、分子动力学及有限元模拟。在材料领域发表相关研究论文近20篇。aihua553030@163.com   
作者简介:  林路贺,南昌航空大学材料科学与工程学院研究生,师从邹爱华副教授,研究方向为纳米催化。
引用本文:    
林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
LIN Luhe, ZOU Aihua, KANG Zhibing, GUO Hao, WANG Jie. Synthesis of Co-Ni-Mo Ternary Nanomaterials and Study on Their Catalytic Hydrogen Production from Ammonia Borane. Materials Reports, 2023, 37(16): 21120005-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21120005  或          http://www.mater-rep.com/CN/Y2023/V37/I16/21120005
1 Xiao G P, Qiao W J, Wang L B, et al. Journal of Fuel Chemistry and Technology, 2020, 48(2),213(in Chinese).
肖国鹏, 乔韦军, 王丽宝, 等. 燃料化学学报, 2020, 48(2), 213.
2 Zhang J, Dong Y N, Liu Q X, et al. International Journal of Hydrogen Energy, 2019, 44(57), 30226.
3 Lu P J, Cai F F, Zang J, et al. Journal of Fuel Chemistry and Technology, 2019, 47(7), 791(in Chinese).
卢培静, 蔡夫锋, 张军,等. 燃料化学学报, 2019, 47(7), 791.
4 Wu H, Wu M, Wang B Y,et al. Journal of Energy Chemistry, 2020, 48(9), 43.
5 Li L L, Fan S S, Chen Q X, et al. Energy Storage Science and Technology, 2018, 7(4),586(in Chinese).
李璐伶,樊栓狮,陈秋雄,等. 储能科学与技术, 2018, 7(4),586.
6 Akbayrak S, Ozkar S. International Journal of Hydrogen Energy, 2018, 43(40), 18592.
7 Yao Q L, Lu Z H, Huang W, et al. Journal of Materials Chemistry A, 2016, 4(22), 8579.
8 Uzundurukan A, Devrim Y. International Journal of Hydrogen Energy, 2019, 44(49), 26773.
9 Zhou L M, Meng J, Li P, et al. Materials Horizons, 2017, 4(2), 268.
10 Chen W Y, Li D L, Wang Z J, et al. Aiche Journal, 2017, 63(1), 60.
11 Tonbul Y, Akbayrak S, Özkar S. Journal of Colloid and Interface Science, 2019, 553, 581.
12 Akbayrak S, Tonbul Y, Özkar S. Applied Catalysis B: Environmental, 2016, 198, 162.
13 Zou H T, Zhang S L, Hong X L, et al. Journal of Alloys and Compounds, 2020, 835, 155426.
14 Du X Q, Tan S Y, Cai P, et al. Journal of Materials Chemistry A, 2016, 4(38), 14572.
15 Yang C L, Men Y N, Xu Y Z, et al. ChemPlusChem, 2019, 84(4), 382.
16 Zheng H C, Feng K, Shang Y P, et al. Inorganic Chemistry Frontiers, 2018, 5(5), 1180.
17.Yang X, Li Q L, Li L L, et al. Journal of Power Sources, 2019, 431, 135.
18 Zhang J X, Li G H, Gan S P, et al. Chinese Journal of Inorganic Chemistry, 2020, 36(2),241(in Chinese).
翟佳欣, 李国华, 甘思平,等. 无机化学学报, 2020, 36(2), 241.
19 Yan J M, Zhang X B, Shioyama H, et al. Journal of Power Sources, 2010, 195(4), 1091.
20 Yang X, Li Q L, Li L L, et al. Journal of Power Sources, 2019, 431, 135.
21 Guo L L, Gu X J, Kang K, et al. Journal of Materials Chemistry A, 2015, 3(45), 22807.
22 Yen H A, Seo Y B, Kallaguine S, et al. ACS Catalysis, 2015, 5(9), 5505.
23 Feng W Q, Yang L, Cao N, et al. International Journal of Hydrogen Energy, 2014, 39(7), 3371.
24 Yang K K, Yao Q L, Huang W, et al. International Journal of Hydrogen Energy, 2017, 42(10), 6840.
25 Hong Y, Long K, Tao L, et al. Chinese Chemical Letters, 2017, 28(12),2180.
26 Yang K. Synthesis and catalytic performance of Mo promoted Cu-based nanomaterials. Master's Thesis, Jiangxi Normal University,China, 2017, (in Chinese).
杨昆. 钼增强铜基纳米材料的合成及其催化性能研究.硕士学位论文, 江西师范大学, 2017.
27 Yao Q L, Lu Z H, Wang Y Q, et al. Journal of Physical Chemistry C, 2015,119(25), 14167.
28 Akbayrak S, Özçifçi Z, Tabak A. Biomass and Bioenergy, 2020, 138(2),105589.
29 Akbayrak S, Taneroglu Ozkar S. New Journal of Chemistry, 2017, 41(14), 6546.
30 Zacho S L, Mielby J, Kegnæs S. Catalysis Science & Technology, 2018, 8(18), 4741.
31 Wen M, Sun B L, Zhou B, et al. Journal of Materials Chemistry, 2012, 22, 11988.
32 Rachiero G P, Demirci U B, Miele P. International Journal of Hydrogen Energy, 2011, 36, 7051.
33 Figen A K. International Journal of Hydrogen Energy, 2013, 38, 9186.
34 Xu Q, Chandra M. Journal of Power Sources, 2006, 163(1), 364.
35 Du Y S, Cao N, Yang L, et al. New Journal of Chemistry, 2013, 37(10),3035.
36 Wang Q T, Zhang Z, Liu J, et al. Materials Chemistry and Physics, 2017, 204, 58.
37 Zahmakiran M, Durap F, Özkar S. International Journal of Hydrogen Energy, 2010, 35(1), 187.
38 Rakap M, ÖZkar S. International Journal of Hydrogen Energy, 2010, 35(8), 3341.
39 Bulut A, Yurderi M, ErtasI· E, et al. Applied Catalysis B: Environmental, 2016, 180, 121.
40 Paladini M, Arzac G M, Godinho V, et al. Applied Catalysis B Environmental, 2014, 158, 400.
41 Li Z, Li H L, Wang L, et al. International Journal of Hydrogen Energy, 2014, 39(27), 14935.
42 Meng X Y, Yang L, Cao N, et al. ChemPlusChem, 2014, 79(2), 325.
[1] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[2] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[5] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[6] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[7] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[8] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[9] 阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
[10] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[11] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[12] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[13] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[14] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[15] 向寒宾, 苟浇浇, 吴琳, 曾春梅. 1D/2D Co2P/g-C3N4的制备及可见光下光催化分解水析氢性能[J]. 材料导报, 2022, 36(6): 21030152-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed