Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21080117-14    https://doi.org/10.11896/cldb.21080117
  无机非金属及其复合材料 |
建筑3D打印用胶凝材料及其相关性能研究进展
徐卓越1, 李辉1,2,3,*, 张大旺1, 孙雪梅1, 赵柯飞1, 王悦莹1
1 西安建筑科技大学材料科学与工程学院,西安 710055
2 教育部生态水泥工程研究中心,西安 710055
3 陕西省生态水泥混凝土工程技术研究中心,西安 710055
Research Progress of Cementitious Materials and Related Properties for Building 3D Printing
XU Zhuoyue1, LI Hui1,2,3,*, ZHANG Dawang1, SUN Xuemei1, ZHAO Kefei1, WANG Yueying1
1 School of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 Ecological Cement Engineering Research Center, Ministry of Education, Xi’an 710055, China
3 Shaanxi Ecological Cement Concrete Engineering Technology Research Center, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 14074KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 3D打印是一种基于数学模型利用机械设备增材制造的快速成型技术。近年来,3D打印在建筑行业得到快速发展。相对于传统成型工艺,建筑3D打印技术具有无需模板支撑、施工方便、设计自由度高等优点,因此受到了全世界研究人员和学者的广泛关注。
当前,普通硅酸盐水泥、快硬早强型特种水泥、复合型普通水泥、碱激发胶凝材料及石膏基胶凝材料等五大类胶凝材料在3D打印中已得到了一定的应用,但仍然存在不少问题。例如,一方面,与传统泵送混凝土不同,3D打印混凝土需要较快的凝结时间和强度发展速率来满足层间结构的压力,而普通硅酸盐水泥长达45 min的初凝时间和不迟于360 min的终凝时间无法满足打印构件层间作用力快速增长的要求;另一方面,水泥基3D打印胶凝材料的构件层间抵抗弯矩、剪力的能力不足。碱激发胶凝材料应用于3D打印主要存在凝结时间难以调控、体积收缩率大、容易产生开裂等问题。而石膏基胶凝材料存在耐水性差等问题。因此,对3D打印胶凝材料的开发与调控仍是很长一段时间内3D打印建筑研究的重点之一。
与此同时,3D打印技术在建筑行业应用的缺点也很突出:3D打印过程中无模板支撑,以逐层叠加的方式成型,一方面,无法直接添加钢筋,从而导致抗弯强度较低,另一方面,打印过程中造成的层间弱面和引入的空隙在一定程度上成为打印结构潜在的缺陷,造成构件的非均质性,削弱了结构的整体承载能力和长期耐久性能等,从而阻碍其广泛应用。这也意味着其成型工艺对新拌混凝土的性能及在3D打印中的特性提出了更高的挑战。
本文归纳了建筑3D打印用胶凝材料及其相关性能研究进展,分别对普通硅酸盐水泥、快硬早强型特种水泥、复合型普通水泥、碱激发胶凝材料及石膏基胶凝材料等五大类胶凝材料在建筑3D打印中的应用研究以及3D打印浆体的凝结时间与开放时间、流动性、挤出性、可建造性、粘结强度、各向异性强度及耐久性进行介绍,并总结了3D打印胶凝材料结构或构件的应用,分析了目前建筑3D打印面临的问题并展望其前景,以期为3D打印技术在建筑行业的应用及推动其进步提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐卓越
李辉
张大旺
孙雪梅
赵柯飞
王悦莹
关键词:  建筑3D打印  胶凝材料  打印性能  物理性能    
Abstract: 3D printing is a rapid prototyping process based on mathematical models and mechanical additive production equipment. To date, 3D printing has been developed rapidly in the construction industry. Compared with the traditional molding process, 3D printing building technology has advantages of no template support, convenient construction and high design freedom. Therefore, it has been widely concerned by researchers and scholars all over the world.
Recently, ordinary portland cement, fast-hardening and early-strength special cement, composite ordinary cement, alkali-activated cementitious materials and gypsum-based cementing materials have been used in 3D printing. However, it still has many problems. For example, on the one hand, different from traditional pumping concrete, 3D printing concrete needs a faster setting time and strength development rate to meet the pressure of interlayer structure. Thus, the range of initial setting time and final setting time was no later than 45 min and 360 min of ordinary portland cement, respectively, which cannot meet the rapid growth rate of interlayer force of printing components. On the other hand, the ability of inter-layers of cement-based 3D printing cementitious materials is insufficient to resist bending moment and shear force. Alkali-activated materials for 3D printing exists some problems, namely difficulty to control the setting time, large volume shrinkage, and easy cracking. And the poor water resistance is the main issues of gypsum-based cementitious materials. Therefore, the development and regulation of materials is still one of the research focuses of 3D printing architecture for a long time.
At the same time, the application of 3D printing technology has some shortcomings on the construction industry;formed process was the layer-by-layer manner without template support. On the one hand, reinforcement cannot be added directly in this way resulting in lower flexural strength. On the other hand, the weak interlayer surfaces and the introduced voids caused by this method become potential defects of the printed structure to a certain extent, resulting in the heterogeneity of the components, weakening the overall bearing capacity and long-term durability of the structure, etc. It hinders wide application of 3D printing concrete. And it also means that its forming process presents a higher challenge on the performance of fresh concrete and its properties in 3D printing.
In this paper, the research progress of cementitious materials for building 3D printing and their related properties are summarized. The application research of five types of building 3D printing are introduced, such as ordinary portland cement, fast hardening and early strength special cement, compound ordinary cement, alkali-activated materials, and gypsum-based materials. Setting time and opening time, fluidity, extrusion, buildability, bond strength, anisotropic strength and durability of 3D printing pastes are also introduced. The application of 3D printing cementitious materials structure or component is summarized. The problems faced by 3D printing of buildings are analyzed, and its developments are prospected, which in order to provide reference for the application of 3D printing technology in the construction industry.
Key words:  construction 3D printing    binder material    printing property    mechanical property
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TU528  
基金资助: 国家重点研发计划(2018YFC1903804);国家自然科学基金青年项目(52002307);陕西省教育厅科研计划项目(21JY020)
通讯作者:  * 李辉,西安建筑科技大学材料科学与工程学院院长、教授、博士研究生导师。1994年7月本科毕业于西安建筑科技大学材料系,2011年7月在西安建筑科技大学材料与矿资学院材料学专业取得博士学位。主要从事固废资源化利用和建筑3D打印的研究。近年来,在固废资源化利用等领域发表论文几十篇,包括Chemical Engineering Journal、Construction and Building Materials和Journal of Hazardous Materials等。sunshine_lihui@126.com   
作者简介:  徐卓越,2014年7月毕业于河南城建学院,获得工学学士学位。现为西安建筑科技大学材料科学与工程学院博士研究生,在李辉教授和张大旺博士后的指导下进行研究。目前主要研究领域为混凝土3D打印。
引用本文:    
徐卓越, 李辉, 张大旺, 孙雪梅, 赵柯飞, 王悦莹. 建筑3D打印用胶凝材料及其相关性能研究进展[J]. 材料导报, 2023, 37(12): 21080117-14.
XU Zhuoyue, LI Hui, ZHANG Dawang, SUN Xuemei, ZHAO Kefei, WANG Yueying. Research Progress of Cementitious Materials and Related Properties for Building 3D Printing. Materials Reports, 2023, 37(12): 21080117-14.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080117  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21080117
1 Lex R, Timothy W, Ana A, et al. Cement and Concrete Research, 2020, 132, 106047.
2 Mustafa B, Rahul J, Mohamad Y B, et al. Automation in Construction, 2022, 134, 104087.
3 Nan Z, Ming X, Jan S. Cement and Concrete Research, 2022, 151, 106616.
4 Wahid F, Yu B, Tuan D N, et al. Engineering Structures, 2019, 183, 883.
5 Geert D S, Karel L, Viktor M, et al. Cement and Concrete Research, 2018, 112, 25.
6 Joseph S. Cement and Concrete Research, 2018, 112, 1.
7 Li Z J, Ma G W, Wang F, et al. Cement and Concrete Composites, 2022, 125, 104304.
8 Wang Y W, Li M Y, Zhang D, et al. Cement and Concrete Research, 2021, 143, 106386.
9 Wang X, Guo Z A, Yi D H, et al. Materials Reports, 2020, 34(21), 21166(in Chinese).
王行, 郭子傲, 仪登豪, 等. 材料导报, 2020, 34(21), 21166.
10 Luo W F, Yang X X, Ao N J. Materials Reports, 2016, 30(13), 81(in Chinese).
罗文峰, 杨雪香, 敖宁建. 材料导报, 2016, 30(13), 81.
11 Dirk L, Enrico D, Arnaud P, et al. Cement and Concrete Research, 2018, 112, 50.
12 Jonas B, Markus G, Nitish K, et al. Cement and Concrete Research, 2018, 112, 66.
13 Paul S C, Tay Y W D, Panda B, et al. Archives of Civil and Mechanical Engineering, 2018, 18(1), 311.
14 Hou S, Duan Z, Xiao J, et al. Construction and Building Materials, 2021, 273, 121745.
15 Mechtcherine V, Grafe J, Nerella V N, et al. Construction and Building Materials, 2018, 179, 125.
16 Bos F, Wolfs R, Ahmed Z, et al. Virtual and Physical Prototyping, 2016, 209, 8.
17 Manu K M, Rahul A V, Geert D S, et al. Cement and Concrete Compo-sites, 2021, 115, 103855.
18 Van D P J, Snoeck D, De C R, et al. Journal of Building Engineering, 2021, 35, 102059.
19 Karol F, Maria K, Adam Z, et al. Materials, 2020, 13(11), 2590.
20 Zhu B R, Pan J L, Zhou Z X, et al. Materials Reports, 2018, 32(23), 4150(in Chinese).
朱彬荣, 潘金龙, 周震鑫, 等. 材料导报, 2018, 32(23), 4150.
21 Xue L. Preparation and properties of cement based materials for 3D prin-ting technology. Master’s Thesis, Beijing University of Technology, China, 2017 (in Chinese).
薛龙. 3D打印水泥基材料的制备与性能研究. 硕士学位论文, 北京工业大学, 2017.
22 Li X. Experimental study on the mix design and performance of 3D prin-ting concrete. Master’s Thesis, Huazhong University of Science and Technology, China, 2014 (in Chinese).
李旋. 3D打印混凝土配合比设计及其基本性能研究. 硕士学位论文, 华中科技大学, 2014.
23 Qiao X Y, Li Y T, Pan N. Modern Decoration (Theory), 2016 (6), 240 (in Chinese).
乔星宇, 李韵通, 潘宁. 现代装饰(理论), 2016(6), 240.
24 Le T T, Austin S A, Lim S, et al. Materials and Structures, 2012, 45(8), 1221.
25 Vaitkevicius V, Serelis E, Kersevicius V. Construction and Building Materials, 2018, 169, 354.
26 Hambach M, Volkmer D. Cement and Concrete Composites, 2017, 79, 62.
27 Zhu B R, Pan J L, Nematollahi B, et al. Materials and Design, 2019, 181, 108088.
28 Soltan D G, Li V C. Cement and Concrete Composites, 2018, 90, 1.
29 Wu H. Preparation of sulphoaluminate based 3D printing cementitious materials from industrial solid waste. Master’s Thesis, Shandong University, China, 2020(in Chinese).
吴含. 全工业固废制备硫铝酸盐基3D打印胶凝材料. 硕士学位论文, 山东大学, 2020.
30 Wolfs R J M, Bos F P, Salet T A M. Cement and Concrete Research, 2019, 119, 132.
31 Maier A K, Dezmirean L, Will J, et al. Journal of Materials Science, 2011, 46(9), 2947.
32 Lin X Q, Zhang T, Huo L, et al. Concrete, 2016(9), 175(in Chinese).
蔺喜强, 张涛, 霍亮, 等. 混凝土, 2016(9), 175.
33 Noura K, Georges A, Khadija E C. Construction and Building Materials, 2017, 157, 382.
34 Fan S J, Du X, Chen B. New Building Materials, 2015, 1(4), 1(in Chinese).
范诗建, 杜骁, 陈冰. 新型建筑材料, 2015, 1(4), 1.
35 Khalil N, Aouad G, Cheikh K E, et al. Construction and Building Materials, 2017, 157, 382.
36 Shakor P, Sanjayan J, Nazar A, et al. Construction and Building Materials, 2017, 138, 398.
37 Cao X P, Huang M Y. China Concrete and Cement Products, 2020(2), 1 (in Chinese).
曹香鹏, 黄明洋. 混凝土与水泥制品, 2020(2), 1.
38 Pu X C. Alkali slag cement and concrete, Science Press, China, 2010, pp.145 (in Chinese).
蒲心诚. 碱矿渣水泥与混凝土, 科学出版社, 2010, pp.145.
39 Pu X C, Yang C H, Gan C C. Cement, 1992(10), 32(in Chinese).
蒲心诚, 杨长辉, 甘昌成. 水泥, 1992(10), 32.
40 Biranchi P, Suvsh C P. Journal of Cleaner Production, 2017, 167, 281.
41 Zhang D W, Wang D M, Pu C A, et al. Journal of Basic Science and Engineering, 2018, 26 (3), 596(in Chinese).
张大旺, 王栋民, 朴春爱, 等. 应用基础与工程科学学报, 2018, 26(3), 596.
42 Xia Y X. The preparation and properties on alkali-activated cementitious material for 3D printing. Master’s Thesis, Chongqing University, China, 2019 (in Chinese).
夏雨欣. 3D打印碱激发胶凝材料的制备及性能研究. 硕士学位论文, 重庆大学, 2019.
43 Panda B, Paul S C, Hui L J, et al. Journal of Cleaner Production, 2017, 20(167), 281.
44 Zhi Z Z. Research of rheology characteristic and structure formation of 3D printing high-strength gypsum materials. Ph. D. Thesis, Wuhan University of Technology, China, 2018 (in Chinese).
郅真真. 高强石膏3D打印材料流变特性与结构成型调控研究. 博士学位论文, 武汉理工大学, 2018.
45 Huang J, Duan B, Cai P, et al. Construction and Building Materials, 2021, 304(1), 124624.
46 Ma B, Jiang Q, Huang J, et al. Construction and Building Materials, 2019, 217, 394.
47 Lin X Q, Zhang T, Huo L, et al. Concrete, 2016(6), 141 (in Chinese).
蔺喜强, 张涛, 霍亮, 等. 混凝土, 2016(6), 141.
48 Lei B, Ma Y, Xiong Y C, et al. Concrete, 2018(11), 47 (in Chinese).
雷斌, 马勇, 熊悦辰, 等. 混凝土, 2018(11), 47.
49 Wallevik O H, Feys D, Wallevik J E, et al. Cement and Concrete Research, 2015, 78, 100.
50 Figueiredo S C, Rodríguez C R, Ahmed Z Y, et al. Materials and Design, 2019, 169, 107651.
51 Chidiac S E, Habibbeigi F, Chan D. ACI Materials Journal, 2006, 103(6), 413.
52 Islam L A. Materials Research, 2009, 12(1), 75.
53 Tay Y W D, Qian Y, Tan M J. Composites Part B, 2019, 174, 1.
54 Zhang Y, Zhang Y, She W, et al. Construction and Building Materials, 2019, 201, 278.
55 Wang Y K, Yang Q R. Journal of Building Materials, 2021, 24(4), 9 (in Chinese).
王亚坤, 杨钱荣. 建筑材料学报, 2021, 24(4), 9.
56 Malaeb Z, Hachem H, Tourbah A, et al. International Journal of Civil Engineering, 2015, 6(6), 14.
57 Chen M X, Li L B, Wang J A, et al. Construction and Building Materials, 2020, 234, 117391.
58 Panda B, Ruan S, Unluer C, et al. Composites Part B, 2019, 165, 75.
59 Ma G W, Salman N M, Wang L, et al. Construction and Building Materials, 2020, 244, 118305.
60 Weng Y, Li M, Tan M J, et al. Construction and Building Materials, 2018, 163, 600.
61 Rahul A, Santhanam M. Cement and Concrete Composites, 2020, 109, 103570.
62 Zhu B R, Pan J L, Nematollahi B, et al. Materials and Design, 2019, 181, 108088.
63 Soltan D G, Li V C. Cement and Concrete Composites, 2018, 90, 1.
64 Panda B, Unluer C, Tan M J. Composites Part B Engineering, 2019, 176, 107290.
65 Lu B, Zhu W P, Weng Y W, et al. Journal of Cleaner Production, 2020, 258, 120671.
66 Zhang C, Hou Z, Chen C, et al. Cement and Concrete Composites, 2019, 104, 103406.
67 Noura K, Georges A, Khadija E C, et al. Construction and Building Materials, 2017, 157, 382.
68 Liu Q L. Preliminary study on preparation and molding technology of building mortar for 3D printing, Tongji University Press, China, 2016, pp.25(in Chinese).
刘巧玲. 用于 3D 打印的建筑砂浆制备与成型技术初步研究, 同济大学出版社, 2016, pp.25.
69 Zhao Z Z. Study on preparation, performance and application technology of underwater 3D printing building mortar, Tongji University Press, China, 2018, pp.32(in Chinese).
赵宗志. 水下 3D 打印建筑砂浆的制备、性能及应用技术研究, 同济大学出版社, 2018, pp.32.
70 Austin S A, Robins P J, Goodier C I. Magazine of Concrete Research, 1999, 51(5), 341.
71 Austin S A, Robins P J, Goodier C I. Materials and Structures, 2005, 38, 229.
72 Jacobsen S. Cement and Concrete Research, 2009, 39, 997.
73 Mu B, Li Z, Chui S N C, et al. Cement and Concrete Research, 1999, 29(2), 237.
74 Shao Y X, Qiu J, Shah S P. Cement and Concrete Research, 2011, 31, 1153.
75 Lombois-Burger H, Colombet P, Halary J L. Cement and Concrete Research, 2006, 36, 2086.
76 Noura K, Georges A, Khadija E C, et al. Construction and Building Materials, 2017, 157, 382.
77 Zeina M, Hussein H, Farook H. Research, 2015, 6, 14.
78 Ma G W, Li Z J, Wang L. Construction and Building Materials, 2018, 162, 613.
79 Kruger J, Zeranka S, Zijl G V. Automation in Construction, 2019, 106, 102904.
80 Lim S, Buswell R A, Valentine P J, et al. Additive Manufacturing, 2016, 12, 216.
81 Sanjayan J G, Nematollahi B, Xia M, et al. Construction and Building Materials, 2018, 172, 468.
82 Feng P, Meng X M, Chen J F, et al. Construction and Building Material, 2015, 93, 486.
83 Gosselin C, Duballet R, Roux P, et al. Materials and Design, 2016, 100, 102.
84 Nerella V N, Beigh M A B, Fataei S, et al. Cement and Concrete Research, 2019, 115, 530.
85 Júlio E N B S, Branco F A B, Silva V D. Construction and Building Materials, 2004, 18, 675.
86 Roussel N, Cussigh F. Cement and Concrete Research, 2008, 38, 624.
87 Lecompte T, Perrot A. Cement and Concrete Research, 2017, 92, 92.
88 Nerella V N, Hempel S, Mechtcherine V. Construction and Building Materials, 2019, 205, 586.
89 Wang L, Wang B L, Bai G, et al. Journal of Experimental Mechanics, 2020, 35(2), 243(in Chinese).
王里, 王伯林, 白刚, 等. 实验力学, 2020, 35(2), 243.
90 Putten J V D, Volder M D, Heede P V D, et al. 3D Printing of Concrete: the Influence on Chloride Penetration, 2020, 7, 500.
91 Assaad J J, Hamzeh F, Hamad B. Case Studies in Constrution Materials, 2020, 13, e00357.
92 Federowicz K, Kaszyńska M, Zieliński A, et al. Materials, 2020, 13(11), 2590.
93 Huang Y M, Mao Y P, Wang X J, et al. Bulletin of the Chinese Ceramic Society, 2021, 40(6), 1997(in Chinese).
黄彦敏, 毛岩鹏, 王旭江, 等. 硅酸盐通报, 2021, 40(6), 1997.
94 Asprone D, Auricchio F, Menna C, et al. Construction and Building Materials, 2018, 165, 218.
95 Gosselin C, Duballet R, Roux P, et al. Materials and Design, 2016, 100, 102.
96 Wangler T, Lloret E, Reiter L, et al. Rilem Technical Letters, 2016, 1, 67.
97 He F, Li B T, Fu B Y. Highway, 2019, 64(2), 105(in Chinese).
何凡, 李丙涛, 付佰勇. 公路, 2019, 64(2), 105.
98 Salet T A M, Ahmed Z Y, Bos F P, et al. Virtual and Physical Prototyping, 2018, 13(3), 222.
99 Su L C. Chinese Highway, 2020(5), 63(in Chinese).
苏立超. 中国公路, 2020(5), 63.
100 Wolfs R.3D printing of concrete structures. Master’s Thesis, Eindhoven University of Technology, the Netherlands,2015.
101 Li F, Liang Y. Global Journal of Humanities and Social Sciences, 2014, 14(5), 7.
[1] 孙睿, 邬兆杰, 王栋民, 丁源, 房奎圳. 超细镁渣微粉-水泥复合胶凝材料的性能及水化机理[J]. 材料导报, 2023, 37(9): 22060197-11.
[2] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[3] 刘晓明, 张增起, 李宇, 张娜, 王亚光, 张未, 张以河. 赤泥在建筑材料和复合高分子材料中的利用研究进展[J]. 材料导报, 2023, 37(10): 23020109-14.
[4] 晏彩先, 许明明, 陈祝安, 王姿奥, 刘伟平, 常桥稳. 新型铱配合物[Ir(pmppy)2(Br2bpy)]PF6的合成、晶体结构及光物理性能测试[J]. 材料导报, 2022, 36(Z1): 21090264-5.
[5] 韦宇, 周新涛, 黄静, 罗中秋, 马越, 母维宏, 刘钦, 雒云龙. 缓凝剂对磷酸镁水泥性能及其水化机制影响研究进展[J]. 材料导报, 2022, 36(4): 20050027-7.
[6] 王家滨, 侯泽宇, 张凯峰, 李恒. 再生混凝土高浓度Mg2+-SO42--Cl-复合盐侵蚀耐久性[J]. 材料导报, 2022, 36(23): 21080171-11.
[7] 王坤俊, 胡波, 李世军, 常森, 张治权, 丘丹圭. 废旧浸渍活性炭的微波再生条件及其结构和性能研究[J]. 材料导报, 2022, 36(17): 21070137-6.
[8] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[9] 王家滨, 侯泽宇, 张凯峰, 王斌, 李恒. 多元胶凝材料体系再生混凝土力学性能试验研究[J]. 材料导报, 2022, 36(12): 21060067-8.
[10] 杨树桐, 李琳桢, 于淼. 碱激发海砂再生骨料混凝土的制备及其拉伸强度的确定[J]. 材料导报, 2021, 35(z2): 176-182.
[11] 燕飞, 李春林, 吕辉. 空心微珠增强铝基复合材料的制备工艺及性能研究进展[J]. 材料导报, 2021, 35(z2): 376-380.
[12] 宋少民, 王宇杰, 李统彬. 新型胶凝材料体系的抗裂性能[J]. 材料导报, 2021, 35(Z1): 206-210.
[13] 孙茹茹, 王振, 黄法礼, 易忠来, 袁政成, 谢永江, 李化建. 不同岩性石粉-水泥复合胶凝材料性能研究[J]. 材料导报, 2021, 35(Z1): 211-215.
[14] 刘益良, 苏幼坡, 殷尧, 赵江山, 王硕, 莫宗云. 膨润土改性胶凝材料的研究进展[J]. 材料导报, 2021, 35(5): 5040-5052.
[15] 金宇, 冯伟鹏, 董志君, ManuelMonasterio, 李明雨. 辅助胶凝材料玻璃体结构与胶凝活性的研究进展[J]. 材料导报, 2021, 35(3): 3016-3020.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed