Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21080257-6    
  金属与金属基复合材料 |
脉冲激光热爆箔法制备金属粉末试验及工艺优化
林志玮1,2, 赵兴科1,2, 赵增磊1, 王世泽1,2
1 北京科技大学顺德研究生院,广东 佛山 528399
2 北京科技大学材料科学与工程学院,北京 100083
Process Optimization for Preparation of Metallic Powders by Exploding Foil with Pulsed Laser
LIN Zhiwei1,2, ZHAO Xingke1,2, ZHAO Zenglei1, WANG Shize1,2
1 Shunde Graduate School of University of Science and Technology Beijing, Foshan 528399, Guangdong, China
2 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
下载:  全 文 ( PDF ) ( 6574KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属粉末是应用广泛的工业原材料,因此需要不断开发先进金属粉末制备技术。本工作提出了以脉冲激光为热源、不锈钢箔为原料的激光热爆法制粉工艺,通过正交试验方案制备了25种工艺参数下的粉末样品,分别采用激光测粒仪、光学显微镜和扫描电镜研究了粉末的粒径及其分布、粉末颗粒的宏观和微观形貌。采用极差分析和BP神经网络(BPNN)分析两种方法对样品粉末进行了评价和工艺参数优化。研究发现,与常规的极差分析相比,BP神经网络模型不仅优化效果更好,而且获得了粒径均匀、细小、球形度良好的优化工艺参数粉末样品。结果表明,BP神经网络分析能为新型脉冲激光热爆箔法金属粉末制备技术的开发提供有力保障。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
林志玮
赵兴科
赵增磊
王世泽
关键词:  脉冲激光  金属箔  金属粉末  BP神经网络分析  工艺优化    
Abstract: Metal powders are widely used industrial raw materials, and therefore it is necessary to continuously develop advanced metal powder preparation techniques. A laser thermal explosion powder-making process with a pulsed laser as heat source and a stainless-steel foil as raw material was proposed, and various powder samples under 25 process parameters were prepared by orthogonal test scheme. Particle size distribution of each kind of powder were studied by laser particle sizer, optical microscope and scanning electron microscope respectively. The sample powders were evaluated and the process parameters were optimized by two methods, range analysis and BP neural network (BPNN). It is found that compared with the conventional range analysis, the BP neural network model not only had better optimization effect, but also obtained powder samples with uniform and fine particle size and good sphericity with optimized process parameters. It indicates that the BP neural network analysis can provide a strong guarantee for the development of a new type of metal powder preparation technique of pulsed laser thermal explosion foil method.
Key words:  pulse laser    metal foil    metal powder    BP neural network analysis    process optimization
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TF123  
  TN249  
基金资助: 广东省重点领域研发计划(2019B90907002)
通讯作者:  xkzhao@ustb.edu.cn   
作者简介:  林志玮,北京科技大学材料科学与工程学院硕士研究生。现于北京科技大学顺德研究生院激光材料加工实验室进行学习,主要从事激光材料加工领域的研究。
赵兴科,北京科技大学副教授、硕士研究生导师。1984年在华南理工大学本科毕业,1993年在中国科学院金属研究所获硕士学位,2002年在哈尔滨工业大学获博士学位。2003—2005年在中国科学院应用物理所做博士后研究。2005年进入北京科技大学任教。研究领域为金属材料焊接原理与工艺、粉末冶金原理与工艺、电子封装互联原理与工艺等,目前兼管北京科技大学顺德研究生院激光材料加工实验室,主要从事激光材料加工研究,在研项目包括广东省重点领域研发计划专题、佛山市科技创新专项等。主编教材专著3本,研究论文110余篇,授权专利7项。
引用本文:    
林志玮, 赵兴科, 赵增磊, 王世泽. 脉冲激光热爆箔法制备金属粉末试验及工艺优化[J]. 材料导报, 2022, 36(Z1): 21080257-6.
LIN Zhiwei, ZHAO Xingke, ZHAO Zenglei, WANG Shize. Process Optimization for Preparation of Metallic Powders by Exploding Foil with Pulsed Laser. Materials Reports, 2022, 36(Z1): 21080257-6.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21080257
1 Gai G S, Yang Y F, Jin L, et al. Powder Technology, 2008, 183, 115.
2 程玉婉, 关航健, 李博, 等.材料导报, 2017, 31(Z1), 98.
3 熊江英, 杨金龙, 张建庭,等.中国建材科技, 2021, 30(2), 1.
4 Dario G, Nevaf C, Sarah A, et al. Metallurgical and Materials Transactions A, 2021, 52(9), 3750.
5 Cacace S, Semeraro Q. Additive Manufacturing, 2020, 36, 101509.
6 何杰, 马士洲, 张兴高, 等. 机械工程材料, 2020, 44(11), 46.
7 刘英杰, 胡强, 赵新明, 等.稀有金属材料与工程, 2021 (5), 1767.
8 许德, 高华兵, 董涛, 等. 中国有色金属学报, 2021, 31(2), 245.
9 Roberto D, Carlos C, Patricio F. The Journal of Physical Chemistry A, 2021, 125(12), 2512.
10 李波, 杜勇, 邱联昌, 等.中国材料进展, 2018, 37(7), 264.
11 康靓, 米晓希, 王海莲, 等.材料导报, 2020, 34(21), 21172.
12 Majumder A. International Journal of Engineering Science and Technology, 2010, 10, 5175.
13 Mishra S, Yadava V. Optics and Lasers in Engineering, 2013, 51, 681.
14 Akbari M, Saedodin S, Panjehpour A, et al. Optik - International Journal for Light and Electron Optics, 2016, 127(23), 11161.
15 Liao H T, Chen Z W. The International Journal of Advanced Manufactu-ring Technology, 2013, 67(5), 1015.
16 Deng Z X, Chen T, Wang H J, et al. Applied Sciences, 2020, 10, 6631.
17 Gao S P, Liu Q, Han F X, et al. Advances in Materials Science and Engineering, 2021, 4, 1.
18 Jiang L, Wang C S, Fu H D, et al. Journal of Materials Science & Technology, 2022, 98(30), 33.
19 刘艳侠, 高新琛.辽宁大学学报(自然科学版), 2007(2), 116.
20 崔岩, 卢昀坤, 曹雷刚, 等.热加工工艺, 2018, 47(12), 13.
21 陈超, 张兴媛, 陆思烨.激光与光电子学进展, 2021(22), 223000.
22 周飞燕, 金林鹏, 董军.计算机学报, 2017, 40(6), 1229.
23 徐明, 陈豪.信息技术与信息化, 2021(5), 34.
24 Zhou J C, Wei W, Zhang R Z, et al. Mathematics, 2021, 9(13), 1533.
25 杜亮.基于神经网络和遗传算法的选区激光熔化工艺优化研究. 硕士学位论文, 厦门理工学院, 2021.
[1] 李彬, 李娜, 黄一凡, 王强, 张晓东. 单粒子效应的激光模拟方法研究进展[J]. 材料导报, 2021, 35(21): 21195-21201.
[2] 邱宇, 朱俊, 周云霞, 李康, 张钰. Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响[J]. 材料导报, 2021, 35(2): 2001-2005.
[3] 王荣城, 王文宇, 殷凤仕, 任智强, 常青, 赵阳, 秦智勇. 铜及其合金表面涂层技术与增材制造技术研究进展[J]. 材料导报, 2021, 35(19): 19142-19152.
[4] 单腾, 王思捷, 殷凤仕, 乔玉林, 刘鹏飞. 激光清洗的典型应用及对基体表面完整性影响的研究进展[J]. 材料导报, 2021, 35(11): 11163-11172.
[5] 沈艳, 刘丹丹, 宋世金, 唐艳艳, 胡一丁, 武浩荣, 虞澜. 透明导电CuCr1-xMgxO2(x=0~0.08)薄膜的固溶度扩展和c轴外延生长[J]. 材料导报, 2021, 35(10): 10008-10012.
[6] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[7] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[8] 陈康, 何啸宇, 李文豪, 吴义强, 李新功, 左迎峰. 乳酸接枝竹纤维/聚乳酸复合材料的制备与性能表征[J]. 材料导报, 2020, 34(20): 20171-20176.
[9] 周亚, 李萍, 张 源, 袁光明, 王向军, 吴义强, 左迎峰. 基于呼吸浸渍法硅酸钠强化杉木木材工艺优化[J]. 材料导报, 2020, 34(18): 18171-18176.
[10] 卢勇, 冯辉霞. 转化膜致密化及耐蚀性能提升工艺优化进展[J]. 材料导报, 2020, 34(13): 13160-13166.
[11] 姜志鹏, 陈小明, 赵坚, 张磊, 伏利, 刘伟. 激光熔覆技术制备非晶涂层的研究进展与展望[J]. 材料导报, 2019, 33(z1): 191-194.
[12] 张化福,沙浩,吴志明,蒋亚东,王操,孙艳,景强. 太赫兹波段二氧化钒薄膜的研究进展[J]. 材料导报, 2019, 33(15): 2513-2523.
[13] 袁大超, 郭双, 郝建军, 马跃进, 王淑芳. 脉冲激光沉积c轴取向BiCuSeO外延薄膜及其热电性能[J]. 材料导报, 2019, 33(1): 152-155.
[14] 龚圣, 沈之川, 周新华, 陈铧耀, 徐华. 毒死蜱/脲醛树脂微胶囊的制备工艺优化及缓释动力学[J]. 《材料导报》期刊社, 2018, 32(8): 1241-1246.
[15] 周蕊, 李璐璐, 谢东, 张建国, 吴孟丽. 基于修正Drucker-Prager Cap模型的金属粉末成形本构模型参数确定方法[J]. 材料导报, 2018, 32(6): 1020-1025.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed