Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21060186-9    
  金属与金属基复合材料 |
三元镍钴锰前驱体制备方法的研究现状
谢焕玲1,2,3, 赵秋月1,2,3, 张廷安1,2,3, 李杨1,2,3
1 东北大学冶金学院,沈阳 110819
2 东北大学多金属共生矿生态化冶金教育部重点实验室,沈阳 110819
3 有色金属冶金过程技术教育部工程研究中心,沈阳 110819
Research Status of Preparation Methods of Ternary Ni-Co-Mn Precursors
XIE Huanling1,2,3, ZHAO Qiuyue1,2,3, ZHANG Ting'an1,2,3, LI Yang1,2,3
1 School of Metallurgy, Northeastern University, Shenyang 110819, China
2 Key Laboratory for Ecological Metallurgy of Multimetallic Ores (Ministry of Education), Northeastern University, Shenyang 110819, China
3 Engineering Research Center of Ministry of Education of Non-ferrous Metals Metallurgical Process Technology, Shenyang 110819,China
下载:  全 文 ( PDF ) ( 11995KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 三元镍钴锰前驱体的合成很大程度上决定了锂电池正极材料的理化性能,因此前驱体的研究越发受到重视。由于在前驱体合成过程中存在颗粒形态不一、粒径分布不均等现象,后续的锂化及所合成的锂电池的电化学性能都随之受到影响。因此近年来通过调节进料速率、物料浓度,添加有机溶剂、表面活性剂、金属离子等手段改善前驱体的理化性能。本文主要概述了三元镍钴锰前驱体合成方法的研究进展,分析并展望了前驱体发展趋势,以期对合成高容量、优异循环性能、长续航电池的制作提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢焕玲
赵秋月
张廷安
李杨
关键词:  锂离子电池  镍钴锰前驱体  合成方法  共沉淀法    
Abstract: The physical and chemical properties of cathode materials are largely determined by the synthesis of ternary Ni-Co-Mn precursors. Therefore, the research of precursor is getting deeper and deeper. The results show that the particle morphology and size distribution of Ni-Co-Mn precursor are different during the synthesis process, which affect the subsequent lithiation and the electrochemical performance of the synthesized lithium battery. Therefore, research has been done to improve the physicochemical properties by adjusting feed rate, material concentration, adding organic solvents, surfactants and metal ions in the process of synthesizing precursor in recent years. In this paper, the synthesis methods of Ni-Co-Mn precursor are reviewed. Finally, the development trend of precursor in recent years was analyzed and prospected in order to provide ideas for the synthesis of lithium batteries with high capacity, excellent cycle performance and long-life.
Key words:  lithium-ion battery    nickel cobalt manganese precursor    synthesis method    co-precipitation method
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TM912.9  
基金资助: 国家自然科学基金(U1908225;U1903129)
通讯作者:  zhaoqy@smm.neu.edu.cn   
作者简介:  谢焕玲,2019年毕业于河南科技学院化学化工学院,获得学士学位。现为东北大学冶金学院硕士研究生,在赵秋月副教授和张廷安教授的指导下进行研究。主要研究方向为锂离子电池正极材料、前驱体方向。
赵秋月,东北大学冶金学院副教授,1997—2008年先后在东北大学热能专业与有色金属冶金专业获得学士、硕士、博士学位,并于美国普渡大学以访问学者身份交流一年。获得包括辽宁省科学技术奖在内的省部级奖项6项,主持和参加国家自然科学基金等国家级项目10余项。目前,主要从事冶金反应工程学及有色冶金反应器的优化与放大研究。
引用本文:    
谢焕玲, 赵秋月, 张廷安, 李杨. 三元镍钴锰前驱体制备方法的研究现状[J]. 材料导报, 2022, 36(Z1): 21060186-9.
XIE Huanling, ZHAO Qiuyue, ZHANG Ting'an, LI Yang. Research Status of Preparation Methods of Ternary Ni-Co-Mn Precursors. Materials Reports, 2022, 36(Z1): 21060186-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21060186
1 Schmuch R, Wagner R, Hrpel G, et al. Nature Energy, 2018, 3(4), 267.
2 Martens A, Bolli C, Hoffmann A, et al. Journal of the Electrochemical Society, 2020, 167(7), 070510.
3 Du B, Mo Y, Jin H, et al. ACS Applied Energy Materials, DOI:10.1021/acsaem.0c00803.
4 Zhang Y, Cui C, He Y, et al. Materials Chemistry and Physics, 2021, 262(3), 124269.
5 Jihyun H, Hyeokjo G, Jung S, et al. Journal of the Electrochemical Society, 2015, 162, 14.
6 Wu F, Maier J, Yu Y. Royal Society of Chemistry, 2020, 49, 1569.
7 Liu X, Wang X, Yue B, et al. Journal of the Chinese Chemical Society, DOI:10.1002/jccs.202000051.
8 Sun X, Luo X, Zhang Z, et al. Journal of Cleaner Production, 2020, 273, 123006.
9 Schipper F, Evan M. E, ChristopH E, et al. Journal of the Electrochemical Society, 2017, 164, A6220.
10 Li Y, Han Q, Ming X, et al. Ceramics International, 2014, 40(9), 14933.
11 Adrien B, Laurence C, Delmas C, et al. Chemistry of Materials, 2009, 21(18), 4216.
12 Yuan K, Li N, Ning R, et al. Nano Energy, 2020, 78, 105239.
13 Liang H, Shuai Y, Shi L, et al. Chemical Engineering Journal, 2020, 394, 124846.
14 Zhao J, Zhang W, Ashfia H, et al. Advanced Energy Material, 2017, 7,1601266.
15 Liu L, Li M, Chu L, et al. Progress in Materials Science, 2020,111, 100655.
16 Amine K, Tukamoto H, Yasuda H, et al. Journal of The Electrochemical Society, 1996, 143, 1607.
17 Zhong Q, Bonakdarpour A, Zhang M, et al. Journal of the Electrochemical Society, 1997, 144, 205.
18 Liu Z, Yu A, Lee J. Journal of Power Sources, 1999, 81-82, 416.
19 Ohzuku T, Makimura Y. Chemistry Letters, 2001, 30(7), 642.
20 Lei Y, Ai J, Yang S, et al. Journal of Alloys and Compounds, 2019, 797,421.
21 Zhao X, An L, Sun J, et al. Journal of Electroanalytical Chemistry, 2018, 810, 1.
22 Ma Y, Li L, Wang L, et al,Journal of Alloys and Compounds, 2019,778, 643.
23 Zhu L, Bao C, Xie L, et al. Journal of Alloys and Compounds, 2020, 831, 154864.
24 Li H, Ren Y, Yang P, et al. Electrochimica Acta, 2019, 297, 406.
25 Zhao X, Liu B, Yang J, et al. Journal of Alloys and Compounds, 2020, 832, 154464.
26 Hou Q, Cao G, Wang P, et al. Journal of Alloys and Compounds, 2018, 747, 796.
27 Santhanam R, Rambabu B. Journal of Power Sources, 2010, 195, 4313.
28 Yuan M, Li Y, Chen Q, et al. Electrochimica Acta, 2019, 323, 134822.
29 Zuo Y, Xu G, Yin Q, et al. Journal of Electroanalytical Chemistry, 2020, 878(1), 114660.
30 Shi Y, Zhang M, Fang C, et al. Journal of Power Sources, 2018, 394, 114.
31 Zeng W, Chen Q, Li Y, et al. Solid State Ionics, 2020, 346, 115214.
32 Peng L, Zhu Y, Khakoo U, et al. Nano Energy, 2015, 17, 36.
33 Chen B, Zhao B, Zhou J, et al. Journal of Materials Science & Technology, 2019, 35(6), 994.
34 Wu B, Yang X, Zhang Y, et al. Journal of Alloys & Compounds, 2018, 744, 809.
35 Ryu W, Lim S, Kim W, et al. Journal of Power Sources, 2014, 257, 186.
36 Zhang Y, Cui C, He Y, et al. Materials Chemistry and Physics, 2021, 262(3), 124269.
37 Zong F, Xie T, Lin X, et al. Ceramics International, 2020, 46( 17), 27010.
38 Yao X, Xu Z, Yao Z, et al. Materials Today Communications, 2019, 19, 262.
39 Li L, Li Y, Li L, et al. Metallurgical & Materials Transactions B, 2017, 48, 2743.
40 Cheralathan K, Kang N, Park H, et al. Journal of Power Sources, 2010, 195(5), 1486.
41 Mo Y, Guo L, Jin H, et al. Journal of Power Sources, 2020, 468, 228405.
42 Jiang Y, Liu Z, Zhang Y, et al. Electrochimica Acta, 2019, 309, 74.
43 Park S, Hong S, Jeon H, et al. Korean Journal of Materials Research, 2020, 30(11), 636.
44 Han Y, Shan X, Zhu G, et al. Electrochimica Acta, 2020, 329, 135057.
45 Cheng L, Zhang B, Su S, et al. Journal of Solid State Chemistry, 2021, 297, 122045.
46 Tian F, Fan X, Wang Q, et al. International Journal of Electrochemical Science, 2020, 15, 10157.
47 Guo Q, Huang J, Liang Z, et al. New Journal of Chemistry, 2021, 7, 45.
48 Li Y, Wei X, Wu Z, et al. Electrochimica Acta, 2018, 291, 84.
49 Cheng L, Zhang B, Su S, et al. RSC Advances, 2020, 1, 11.
50 Zhao X, Feng M, Jiao Y, et al. Desalination, 2020, 481,114360.
51 Shinova E, Stoyanova R, Zhecheva E, et al. Solid State Ionics, 2008, 179(38), 2198 .
52 Zheng X, Li X, Huang Z, et al. Journal of Alloys and Compounds, 2015, 644, 607.
53 Kong J, Zhai H, Ren C, et al. Journal of Solid State Electrochemistry, 2014, 18(1), 181.
54 Cheng K, Mu D, Wu B, et al. International Journal of Minerals Metallurgy and Materials, 2017, 24(3), 342.
55 Fan X, Liu Y, Ou X, et al. Chemical Engineering Journal, 2020, 393, 124709.
56 Pang P, Tan X, Wang Z, et al. Electrochimica Acta, 2021, 365, 137380.
57 Pan C, Zhu Y, Yang Y, et al. Transactions of Nonferrous Metals Society of China, 2016, 26(5), 1396.
58 Pan C, Yang Y, Hou H, et al. Transactions of Nonferrous Metals Society of China, 2018, 28, 145.
59 Liu H, Yang R, Yang W, et al. Journal of Materials Science, 2021, 56(3), 1.
60 Zhang B, Cheng L, Deng P, et al. Journal of Alloys and Compounds, 2021, 159619.
61 Li X, Peng W, Tian R, et al. Electrochimica Acta, 2020, 363, 137185.
62 Zhou J, Wang Q, Zhang M, et al. Electrochimica Acta, 2020, 353,136541.
63 Deng S, Chen Y, Kolliopoulos G, et al. Ionics, 2020, 26(30), 2747.
64 Gao K, Zhao S, Guo S, et al. Electrochimica Acta, 2016, 206, 1.
65 Sun Y, Zhou Y, Zhang L, et al. Journal of Alloys and Compounds, 2017,723, 1142.
66 Helbig J, Beuse T, Siozios V, et al. Electrochimica Acta, 2020, 366, 137413.
67 Zhang N, Ai L, Mao L, et al. Electrochimica Acta, 2019,319, 822.
68 Ma Y, Li L, Wang L, et al. Journal of Alloys and Compounds, 2019, 778, 643.
69 Li X, Long J, Su Z, et al. Ceramics International, 2018, 44(14), 17062.
70 Xie Y, Meng S, Chen X, et al. Journal of Colloid and Interface Science, 2021, 594, 485.
71 Jiang Q, Xu L, Li X, et al. Applied Physics A, 2015, 121(1), 23.
72 Baboo J, Park H, Song J, et al. Electrochimica Acta, 2017, 224, 243.
73 Fan X, Hu G, Zhang B, et al. Nano Energy, 2020, 70, 104450.
74 Martens A, Bolli C, Hoffmann A, et al. Journal of the Electrochemical Society, 2020, 167(7), 070510.
[1] 胡思思, 刘倩, 李文, 王波. 三维大骨架结构FeSe2材料的制备及储锂机理研究[J]. 材料导报, 2022, 36(8): 21010183-5.
[2] 侯璞, 张九州, 寻之玉, 霍鹏飞. 聚氨酯基聚合物电解质的应用进展[J]. 材料导报, 2022, 36(5): 20060009-9.
[3] 詹宁宁, 张丽锋, 赵新星, 秦立娟, 滕厚开. 超支化聚合物的合成及应用[J]. 材料导报, 2021, 35(z2): 616-626.
[4] 郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
[5] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[6] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[7] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[8] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[9] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[10] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[11] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[12] 张意丽, 汤旭涛, 李坚烨, 王府权, 唐康, 胡金星, 方振兴, 严洁峰, 王卫. 冷冻干燥辅助法制备具有增强储锂性能的介孔NiMoO4纳米簇[J]. 材料导报, 2021, 35(24): 24011-24017.
[13] 王皓, 李峻峰, 马悦, 杨亚楠, 张佩聪, 赖雪飞, 岳波. 锂离子电池钒系电极材料的研究进展[J]. 材料导报, 2021, 35(21): 21127-21142.
[14] 杨正芳, 张悦, 蔡金霄, 刘志勇, 胡觉. 层状双金属氢氧化物及其复合材料的制备与应用研究新进展[J]. 材料导报, 2021, 35(19): 19062-19069.
[15] 王艳坤. 四氧化三铁/石墨烯纳米复合材料的静电自组装制备及储锂性能[J]. 材料导报, 2021, 35(16): 16008-16014.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed