Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21050264-7    
  金属与金属基复合材料 |
共晶高熵合金力学性能的研究进展
阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧
西安科技大学材料科学与工程学院,西安 710054
Research Progress on Mechanical Properties of Eutectic High-entropy Alloys
YAN Yawen, YU Zhuhuan, GAO Wei, FEI Zhenbao, LIU Xuliang, WANG Xiaohui
Department of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054,China
下载:  全 文 ( PDF ) ( 6478KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 共晶高熵合金是近年发展起来的一种具有优异力学性能的新型合金,其典型的层状共晶组织一般由软质相与硬质相组成,因而共晶高熵合金可以同时具有较高的强度与良好的塑性,这一特点使其作为结构材料在工业领域拥有广泛的应用前景。本文简述了共晶高熵合金的含义与特点,归纳了该类材料力学性能与变形行为的最新研究成果,提出了关于共晶高熵合金相形成机理以及变形过程中微观组织演化等的研究还存在的缺点,并展望了其今后的发展趋势,以期为优化共晶高熵合金的力学性能提供思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阎亚雯
余竹焕
高炜
费祯宝
刘旭亮
王晓慧
关键词:  共晶高熵合金  力学性能  微观组织    
Abstract: Eutectic high-entropy alloy is a novel alloy system which has excellent mechanical properties. Its typical lamellar eutectic structure is generally composed of soft phase and hard phase, and eutectic high-entropy alloys can have high strength as well as good plasticity. This main characteristic of mechanical properties makes eutectic high-entropy alloys have a wide application area in industrial field. This paper introduces the concepts and features of eutectic high-entropy alloys. The recent developments of mechanical properties and deformation behavior of eutectic high-entropy alloys are summarized. The problems on the formation mechanism of phase and microstructure evolution during deformation are put forward,and the future development trends are prospected. Hope that this paper could provide ideas for optimizing the mechanical properties of eutectic high-entropy alloys.
Key words:  eutectic high-entropy alloy    mechanical property    microstructure
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TG139  
基金资助: 西安科技大学优秀青年科技基金(2018YQ2-12); 凝固技术国家重点实验室开放课题(SKLSP201846); 陕西省留学人员科技活动择优资助项目(2018047)
通讯作者:  yzh0709qyy@xust.edu.cn   
作者简介:  阎亚雯,2019年6月毕业于南昌航空大学,获得工学学士学位。现为西安科技大学材料科学与工程学院硕士研究生,在余竹焕副教授的指导下进行研究。目前主要研究领域为高熵合金的微观组织与力学性能。
余竹焕,西安科技大学材料科学与工程学院副教授、硕士研究生导师。2011年3月在西北工业大学材料科学与工程学院取得博士学位,2015—2016年在美国加州州立大学在进行访问学者研究工作。先后主持了国家自然基金青年项目、留学人员科技活动择优资助项目、陕西省自然科学基础研究计划项目、凝固技术国家重点实验室开放课题项目和陕西省教育厅专项科研计划项目。主要从事高温结构材料的研究工作。
引用本文:    
阎亚雯, 余竹焕, 高炜, 费祯宝, 刘旭亮, 王晓慧. 共晶高熵合金力学性能的研究进展[J]. 材料导报, 2022, 36(Z1): 21050264-7.
YAN Yawen, YU Zhuhuan, GAO Wei, FEI Zhenbao, LIU Xuliang, WANG Xiaohui. Research Progress on Mechanical Properties of Eutectic High-entropy Alloys. Materials Reports, 2022, 36(Z1): 21050264-7.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21050264
1 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials, 2004, 6, 299.
2 何骏阳. 合金化对FeCoNiCr系高熵合金组织及力学性能的影响. 博士学位论文, 北京科技大学, 2016.
3 Fu Z Q, Jiang L, Warini J L, et al. Science Advances, 2018, 4, eaat8712.
4 Li Z, Pradeep K G, Deng Y, et al. Nature, 2016, 534, 227.
5 Youssef K M, Zaddach A J, Niu C, et al. Materials Research Letters, 2015, 3, 95.
6 Tian F, Varga L K, Chen N, et al. Intermetallics, 2015, 58, 1.
7 Wu J M, Lin S J, Yeh J W, et al. Wear, 2006, 261, 513.
8 Poletti M G, Fiore G, Gili F, et al. Materials & Design, 2017, 115, 247.
9 Lu Y P, Dong Y, Guo S, et al. Scientific Reports, 2014, 4, 6200.
10 Huo W Y, Zhou H, Fang F, et al. Materials & Design, 2017, 134, 226.
11 Huo W Y, Zhou H, Fang F, et al. Journal of Alloys and Compounds, 2018, 735, 897.
12 姜慧. CoFeNi(Cr)-M共晶高熵合金成分设计与力学性能研究. 博士学位论文, 大连理工大学, 2018.
13 张建飞, 郝文纬, 徐鹏飞, 等. 稀有金属材料与工程, 2019, 48(5), 1523.
14 Li X, Ren Z M, Fautrelle Y. Acta Materialia, 2006, 54, 5349.
15 Li J G, Hu R, Yang J R,et al. Ceramics International, 2019, 45, 16776.
16 He F, Wang Z J, Cheng P, et al. Journal of Alloys and Compounds, 2016, 656, 284.
17 Jiang L, Lu Y P, Wu W, et al. Journal of Materials Science & Technology, 2016, 32, 245.
18 Dong Y, Jiang L, Jiang H,et al. Materials & Design, 2015, 82, 91.
19 Lu Y P, Jiang H, Guo S,et al. Intermetallics, 2017, 91, 124.
20 Tan Y M, Li J S, Wang J, et al. Journal of Alloys and Compounds, 2018, 731, 600.
21 Wu Q F, Wang Z J, Zheng T,et al. Materials Letters, 2019, 253, 268.
22 Li R, Ren J, Zhang G J, et al. Acta Metallurgica Sinica, 2020, 33, 1046.
23 Tan Y M, Li J S, Wang J,et al. Intermetallics, 2017, 85, 74.
24 Jiao W N, Jiang H, Qiao D X, et al. Materials Chemistry and Physics, 2021, 260, 124175.
25 Jin X, Bi J, Zhang L, et al. Journal of Alloys and Compounds, 2019, 770, 655.
26 Bhattacharjee T, Zheng R X, Chong Y, et al. Materials Chemistry and Physics , 2018, 210, 207.
27 Zhang Y L, Wang X G, Li J G, et al. Materials Science & Engineering, 2018, 724, 148.
28 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Research Letters, 2018, 4, 174.
29 Bhattacharjee T, Wani I S, Sheikh S, et al. Scientific Reports, 2018, 8, 1.
30 Seelam R R, Yoshida S, Bhattacharjee P P, et al. Scientific Reports, 2019, 9, 11505.
31 Xiong T, Zheng S J, Pang J Y, et al. Scripta Materialia, 2020, 186, 336.
32 葛玉会. AlCoCrFeNi2.1共晶高熵合金定向凝固组织及性能研究. 硕士学位论文, 西安理工大学, 2019.
33 Jiang H, Zhang H Z, Huang T D, et al. Materials & Design, 2016, 109, 539.
34 Chen X H, Xie W Y, Zhu J, et al. Intermetallics, 2021, 128, 107024.
35 Kim M J, Kang G C, Hong S H, et al. Journal of Materials Science & Technology, 2020, 57, 131.
36 Han L L, Xu X D, Li Z M, et al. Materials Research Letters, 2020, 8, 373.
37 Jin X, Zhou Y, Zhang L,et al. Materials Letters, 2018, 216, 144.
38 Shi P J, Ren W L, Zheng T X, et al. Nature Communications, 2019, 10, 912.
39 Lu Y P, Gao X Z, Jiang L, et al. Acta Materialia, 2017, 124, 143.
40 Yurkova A I, Cherniavsky V V, Bolbut V, et al. Journal of Alloys and Compounds, 2019, 786, 139.
41 Zheng H T, Chen R R, Qin G,et al. Journal of Alloys and Compounds, 2019, 787, 1023.
42 Braeckman B R, Depla D. Journal of Alloys and Compounds, 2015, 646, 810.
43 曹雷刚, 朱琳, 张磊磊, 等. 材料研究学报, 2019, 33(9), 650.
44 Wang L, Yao C L, Shen J, et al. Intermetallics, 2020, 118, 106681.
45 Jain R, Rahul M R, Jain S, et al. Transactions of the Indian Institute of Metals, 2018, 71, 2795.
46 Gao X Z, Lu Y P, Zhang B, et al. Acta Materialia, 2017, 141, 59.
47 Wani I S, Bhattacharjee T, Sheikh S, et al. Materials Science & Engineering A, 2016, 675, 99.
48 Chung D, Ding Z Y, Yang Y. Advanced Engineering Materials, 2018, 21, 1801060.
49 Jiang H, Qiao D X, Jiao W N, et al. Journal of Materials Science & Technology, 2020, 61, 119.
[1] 张曦挚, 崔红, 胡杨, 邓红兵, 王昊. SiC-ZrC陶瓷含量对C/C-SiC-ZrC复合材料性能的影响[J]. 材料导报, 2022, 36(Z1): 21120073-5.
[2] 张雷, 李姗姗, 庄毅, 唐毓婧, 罗欣. 碳纤维与玻-碳层间混杂2.5维机织复合材料的力学性能对比研究[J]. 材料导报, 2022, 36(Z1): 21100025-5.
[3] 王鹏. 机场道面混凝土性能提升研究[J]. 材料导报, 2022, 36(Z1): 22040083-4.
[4] 唐凌霄, 姚华彦, 徐马云龙, 刘玉亭, 陈传明, 周璟, 吴叙言. 蒸压加气混凝土板研究与应用综述[J]. 材料导报, 2022, 36(Z1): 22030150-4.
[5] 马帅, 金珊珊. 碳纤维增强复合材料对钢筋混凝土的加固作用[J]. 材料导报, 2022, 36(Z1): 22030217-5.
[6] 成俊辰, 赵志曼, 张晖, 全思臣, 吴磊, 廖仕雄. 稻壳磷建筑石膏抹灰砂浆技术性能研究[J]. 材料导报, 2022, 36(Z1): 21090274-5.
[7] 于江, 丁红瑜, 耿遥祥, 许俊华, 宰春凤. 选区激光熔化金属零件后处理技术研究进展[J]. 材料导报, 2022, 36(Z1): 22010033-9.
[8] 郭瑞琪, 王秀琦, 刘国怀, 李天瑞, 王昭东. Ti-44Al-5Nb-1Mo-(V,B)合金热变形过程中的相变、再结晶行为及组织调控[J]. 材料导报, 2022, 36(Z1): 22010111-6.
[9] 史天宇, 孔维雄, 陈雨琳, 宁保群, 董治中. 新型高氮马氏体耐热铸钢的热处理及相变解析[J]. 材料导报, 2022, 36(Z1): 20120084-6.
[10] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[11] 李伟, 曹睿, 闫英杰. 不同热处理态下粉末冶金花纹钢的组织性能及拉伸断裂行为[J]. 材料导报, 2022, 36(9): 21020104-7.
[12] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[13] 杨来东, 李全安, 陈晓亚, 兖利鹏. Mg-Sm系镁合金的研究进展[J]. 材料导报, 2022, 36(7): 20070180-9.
[14] 肖棚, 高杰维, 刘里根, 韩靖. 激光熔覆修复EA4T车轴钢显微组织和强度评价[J]. 材料导报, 2022, 36(7): 21070180-7.
[15] 于天阳, 马国政, 郭伟玲, 何鹏飞, 黄艳斐, 刘明, 王海斗. 冷喷涂不同陶瓷含量Cu-Ti3SiC2复合涂层的微观组织及性能研究[J]. 材料导报, 2022, 36(7): 21120172-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed