Please wait a minute...
材料导报  2022, Vol. 36 Issue (Z1): 21050144-9    
  无机非金属及其复合材料 |
沸石分子筛用于挥发性有机物吸附的研究进展
汤倩茜1, 陈栋航1, 张春杰2, 王钢2, 郭利民1
1 华中科技大学环境科学与工程学院,武汉 430074
2 山西新华防化装备研究院有限公司,太原 030008
Progress of Zeolite Molecular Sieve for VOCs Adsorption
TANG Qianxi1, CHEN Donghang1, ZHANG Chunjie2, WANG Gang2, GUO Limin1
1 School of Environmental Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2 Shanxi Xin Hua Chemical Defense Equipment Institute Co., Ltd., Taiyuan 030008, China
下载:  全 文 ( PDF ) ( 6951KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 挥发性有机物(Volatile organic compounds,VOCs)是生成臭氧和细颗粒物(PM2.5)的重要前驱体之一,对生态环境和人类健康都有重大的危害。针对低浓度的VOCs分离富集,吸附法具有低成本和操作简单的优势。在吸附法中,吸附剂的选择非常关键。沸石分子筛具有大的比表面积、可调控的孔道结构和尺寸、亲疏水性能及良好的水热稳定性和不可燃性,是一类十分重要的吸附剂材料。
本文扼要介绍了沸石分子筛的结构对VOCs吸附性能的影响、吸附理论模型的相关应用以及整体式分子筛吸附剂在VOCs净化领域的研究进展。通过选择适宜拓扑结构和阳离子类型的沸石分子筛实现对特定VOCs分子的选择性吸附;通过提高硅铝原子比、表面改性、杂原子掺杂以及合成沸石分子筛基复合材料等方式提高沸石分子筛的疏水性能,增强沸石分子筛对水汽的抵抗能力。传统的微孔沸石分子筛由于微孔尺寸与VOCs分子尺寸相近,会限制VOCs分子在沸石分子筛孔道中的扩散,近年来,通过构建多级孔道或者缩小沸石分子筛的晶粒尺寸,可有效减小沸石分子筛中VOCs传质阻力,并提高其VOCs吸附容量。但由于在实际工业应用中,实验室合成的沸石分子筛样品难以与工业应用尺寸相匹配,需将沸石分子筛通过挤压成型或者涂覆等方式制成整体式吸附剂来提升其实际应用的适应性。在研究沸石分子筛吸附性能的同时,研究者们将经典吸附理论模型应用其中,从理论角度解释此过程中涉及的扩散和动力学问题。随着沸石分子筛吸附VOCs的性能的提升和机理研究的不断深入,沸石分子筛吸附剂在VOCs净化领域的应用不断拓展。沸石转轮是近年来整体式沸石分子筛应用的重要实践,并在其末端结合燃烧技术,降低VOCs的污染,已被广泛应用于VOCs尾气净化处理中。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汤倩茜
陈栋航
张春杰
王钢
郭利民
关键词:  多孔材料  沸石分子筛  挥发性有机物(VOCs)  吸附净化    
Abstract: Volatile organic compounds (VOCs) are one of the most important precursors to ozone and particulate matter (PM) generation and threa-ten the ecological environment and human health. Among many VOCs end-of-pipe treatment, adsorption stands out, aiming at low VOCs concentration in ample airflow due to low cost and simple operation. Adsorbents are the crucial factor in adsorption. As conventional adsorbents, zeolite molecular sieves possess high specific surface area, adjustable pore structure and size, tunable hydrophobicity, good hydrothermal stability and incombustibility.
This review offers a retrospection of the research efforts concerning the influence of zeolite structure on the VOCs adsorption performance, classical adsorption theory models applied in VOCs adsorption, and monolithic molecular sieve adsorbents for industrial applications. Selecting zeolite molecular sieves with suitable topology and cation type makes it possible to achieve selective adsorption of specific VOCs. Meanwhile, the hydrophobicity of zeolite molecular sieves can be improved by raising the atomic ratio of silicon to aluminum, surface modification, heteroatom doping, and synthesis of zeolite molecular sieve-based composites to improve the resistance to water vapor in the humid environment. However, VOCs mass transfer can be hindered in the conventional microporous zeolites due to the small apertures of micropores (<2 nm) similar to the molecular sizes of VOCs, leading to poor adsorption performance. Either by constructing hierarchical zeolites or decreasing crystal sizes to the nanoscale, it is possible to reduce the mass transfer resistance and increase adsorption capacity. Another problem arises as the lab samples do not match with the industrial application sizes. Monolithic zeolite molecular sieve adsorbents are formed by extruding or coating to enhance their suitability for practical applications. Moreover, classical adsorption models are applied to lab data to explain the diffusion and kinetics issues from a theoretical perspective. With the improvement in VOCs adsorption performance of zeolite molecular sieves and deepening understanding of adsorption mec-hanisms and kinetics, the application of zeolite molecular sieve adsorbents in the field of VOCs purification has been expanding. The zeolite rotor is an important practice for the practical application of monolithic zeolite molecular sieves in recent years and is often followed by a combustion technique, which dramatically reduces VOCs pollution and has been widely applied in industrial VOC exhaust.
Key words:  porous materials    zeolite molecular sieve    volatile organic compounds(VOCs)    adsorption
出版日期:  2022-06-05      发布日期:  2022-06-08
ZTFLH:  TU528.041  
基金资助: 湖北省自然科学基金杰出人才项目(2019CFA070)
通讯作者:  lmguo@hust.edu.cn   
作者简介:  汤倩茜,2019年6月毕业于华中科技大学,获得工学学士学位。现为华中科技大学环境科学与工程学院硕士研究生,在郭利民教授的指导下进行研究。目前主要研究领域为沸石分子筛吸附VOCs。
郭利民,男,华中科技大学环境科学与工程学院教授,中欧清洁与可再生能源学院兼职教授。2005年中南大学金属材料工程专业本科毕业,2010年中国科学院上海硅酸盐所材料物理与化学专业博士毕业。2010年至2012年日本东北大学日本学术振兴会外国人特别研究员,2012年至2016年日本九州大学碳中和能源国际研究所从事博士后研究工作。其后,在华中科技大学环境科学与工程学院工作至今。主要从事吸附/催化剂制备、VOCs吸附/催化燃烧消除、CO2催化加氢等的应用基础研究;近年来承担国家自然科学基金、国家重点研发计划、日本学术振兴会、湖北省杰出青年人才项目、国家/省重点实验室开放基金、日本九州大学、企业横向课题等项目20余项;在国内外学术期刊发表论文80余篇,申请中国发明专利19项,其中授权专利11项,专利转让2项。目前担任中国材料研究学会环境材料分委会委员、中国环境科学学会挥发性有机物污染防治专委会常委、湖北省环境科学学会青年工作委员会副主任委员、《能源环境保护》编委及Chinese Chemical Letters青年编委。
引用本文:    
汤倩茜, 陈栋航, 张春杰, 王钢, 郭利民. 沸石分子筛用于挥发性有机物吸附的研究进展[J]. 材料导报, 2022, 36(Z1): 21050144-9.
TANG Qianxi, CHEN Donghang, ZHANG Chunjie, WANG Gang, GUO Limin. Progress of Zeolite Molecular Sieve for VOCs Adsorption. Materials Reports, 2022, 36(Z1): 21050144-9.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2022/V36/IZ1/21050144
1 郝郑平. 挥发性有机污染物排放控制过程、材料与技术, 科学出版社, 2017.
2 祝富杰, 马万里. 环境科学学报, 2020, 40(10), 3778.
3 申亮杰, 程荣, 陈怡晖, 等. 化工进展, 2017, 36(10), 3887.
4 Huang S S, Yang D Y, Tang Q X, et al. Microporous and Mesoporous Materials, 2020, 305, 110292.
5 Deng W, Tang Q X, Huang S S, et al. Applied Catalysis B: Environmental, 2020, 278, 119336.
6 Ouzzine M, Romero-Anaya A J, Lillo-Ródenas M A, et al. Carbon, 2019, 148, 214.
7 Kim E H, Chun Y N. Chemical Engineering and Processing: Process Intensification, 2016, 104, 51.
8 Ozturk B, Kuru C, Aykac H, et al. Separation and Purification Technology, 2015, 153, 1.
9 Zhou K, Ma W W, Zeng Z, et al. Chemical Engineering Journal, 2019, 372, 1122.
10 Romero-Anaya A J, Lillo-Ródenas M A, Linares-Solano A. Carbon, 2015, 83, 240.
11 Zhu L L, Shen D K, Luo K H. Journal of Hazardous Materials, 2020, 389, 122102.
12 Zhang X Y, Gao B, Creamer A E, et al. Journal of Hazardous Materials, 2017, 338, 102.
13 Li X Q, Zhang L, Yang Z Q, et al. Separation and Purification Technology, 2020, 239, 116517.
14 Zheng X M, Liu S, Rehman S, et al. Chemical Engineering Journal, 2020, 389, 123424.
15 Yang K, Sun Q, Xue F, et al. Journal of Hazardous Materials, 2011, 195, 124.
16 Gascon J, Corma A, Kapteijn F, et al. ACS Catalysis, 2014, 4(2), 361.
17 Hu M L, Masoomi M Y, Morsali A. Coordination Chemistry Reviews, 2019, 387, 415.
18 冷星月, 胡彩虹, 王炜月, 等. 化工进展, 2020, 39(S2), 336.
19 徐如人, 庞文琴, 霍启升, 等. 分子筛与多孔材料化学, 科学出版社, 2004.
20 Cosseron A F, Daou T J, Tzanis L, et al. Microporous and Mesoporous Materials, 2013, 173, 147.
21 吕双春, 葛云丽, 赵倩, 等. 环境化学, 2017, 36(7), 1492.
22 Calero S, Gómez-Álvarez P. Physical Chemistry Chemical Physics Pccp, 2015, 17(39), 26451.
23 Deng H, Pan T, Zhang Y, et al. Chemical Engineering Journal, 2020, 394, 124986.
24 Kang S Y, Ma J Z, Wu Q M, et al. Journal of Chemical & Engineering Data the Acs Journal for Data, 2018, 63(6), 2211.
25 Kraus M, Trommler U, Holzer F, et al. Chemical Engineering Journal, 2018, 351, 356.
26 Takeuchi M, Kimura T, Hidaka M, et al. Journal of Catalysis, 2007, 246(2), 235.
27 Yin T, Meng X, Jin L, et al. Microporous and Mesoporous Materials, 2020, 305,110327.
28 周瑛, 卢晗锋, 王稚真, 等. 环境工程学报, 2012, 6(5), 1653.
29 Huang S S, Deng W, Zhang L, et al. Microporous and Mesoporous Mate-rials, 2020, 302, 110204.
30 Yu Q J, Feng Y C, Tang X L, et al. Microporous and Mesoporous Mate-rials, 2020, 309, 110509.
31 Wang C, Guo H D, Leng S Z, et al. Critical Reviews in Solid State and Materials Sciences, 2020, 4(46), 330.
32 Bonaccorsi L, Bruzzaniti P, Calabrese L, et al. Microporous and Mesoporous Materials, 2016, 234, 113.
33 张媛媛, 王笠力, 何丽, 等. 环境工程学报, 2017, 11(10), 5509.
34 Liu L Y, Singh R, Li G, et al. Materials Chemistry and Physics, 2012, 133(2), 1144.
35 Li R, Xue T S, Li Z, et al. Chemical Engineering Journal, 2020, 392, 124861.
36 Lu S C, Liu Q L, Han R, et al. Chemical Engineering Journal, 2021, 409, 128194.
37 Beerdsen E, Dubbeldam D, Smit B, et al. The Journal of Physical Che-mistry B, 2003, 107(44), 12088.
38 Cui Y K, Li Z Y, Su W, et al. International Journal of Chemical Reactor Engineering, 2020, 18(12),20200105.
39 Zeng Y P, Ju S G. Separation & Purification Technology, 2009, 67(1), 71.
40 Nigar H, Navascués N, de la Iglesia O, et al. Separation and Purification Technology, 2015, 151, 193.
41 Kim N S, Numan M, Nam S C, et al. Journal of Hazardous Materials, 403, 123659.
42 Wang Y, Yang D, Li S Z, et al. Microporous and Mesoporous Materials, 2017, 258, 17.
43 Yang D Y, Fu S Y, Huang S S, et al. Microporous and Mesoporous Materials, 2019, 296, 109802.
44 Christensen C H, Johannsen K, Törnqvist E, et al. Catalysis Today, 2007, 128(3),117.
45 Feng A H, Mi L, Yu Y, et al. Chemical Engineering Journal, 2020, 390, 124529.
46 Milina M, Mitchell S, Crivelli P, et al. Nature Communications, 2014, 5(1), 3922.
47 Kim K J, Ahn H G. Microporous and Mesoporous Materials, 2012, 152, 78.
48 Kortunov P, Vasenkov S, Kärger J, et al. Journal of the American Chemical Society, 2005, 127(37), 13055.
49 Lazaridis N K, Asouhidou D D. Water Research, 2003, 37(12), 2875.
50 Plazinski W, Rudzinski W, Plazinska A. Advances in Colloid and Interface Science, 2009, 152(1), 2.
51 Puértolas B, López M R, Navarro M V, et al. Adsorption Science and Technology, 2010, 28(8-9), 761.
52 Wang C M, Chung T W, Huang C M, et al. Journal of Chemical and Engineering Data, 2005, 50(3), 811.
53 Liu Y, Liu Y J. Separation and Purification Technology, 2008, 61(3), 229.
54 Hussein M S, Ahmed M J. Materials Chemistry and Physics, 2016, 181(15), 512.
55 Liu Y T, Tian T. Materials, 2019, 12(4), 551.
56 Liu S, Peng Y, Yan T, et al. Langmuir, 2019, 35(27), 8927.
57 Akhtar F, Andersson L, Ogunwumi S, et al. Journal of the European Ceramic Society, 2014, 34(7), 1643.
58 Shim W G, Lee J W, Moon H. Microporous and Mesoporous Materials, 2006, 88(1-3), 112.
59 那秀辉, 余林, 孙明, 等. 催化学报, 2010, 31(8), 1019.
60 Sun H, Shen B X, Liu J C. Separation and Purification Technology, 2008, 64(1), 135.
61 Michels N L, Mitchell S, Pérez-Ramírez J. Acs Catalysis, 2014, 4(8), 2409.
62 Wang S, Bai P, Wei Y Z, et al. ACS Applied Materials and Interfaces, 2019, 11(42), 38955.
63 钱冰冰. 化工设计通讯, 2020, 46(12), 170.
64 孔文杰, 凌志斌. 绿色环保建材, 2019, 143(1), 20.
65 牟海阔, 冯元科. 电镀与涂饰, 2019, 38(10), 497.
66 余子睿, 刘昳帆, 郭珊珊, 等. 电镀与涂饰, 2020, 39(24), 1794.
67 何文龙. 现代化工, 2021, 41(10),221.
68 桂浩. 浙江化工, 2021, 52(4), 37.
69 李文方. 山东化工, 2021, 50(10), 272.
70 韦征. 上海化工, 2019, 44(9), 22.
[1] 王杨鑫, 邓强, 李成贵, 温永宇. 多糖/金属有机框架(MOFs)复合气凝胶的制备及应用进展[J]. 材料导报, 2022, 36(4): 20080197-10.
[2] 杨鑫, 马文君, 王岩, 刘世锋, 张兆洋, 王婉琳, 王犇, 汤慧萍. 增材制造金属点阵多孔材料研究进展[J]. 材料导报, 2021, 35(7): 7114-7120.
[3] 贺文志, 邓承继, 丁军, 余超, 王杏, 祝洪喜. 多孔Mo2C/C复合陶瓷材料的制备及吸附性能[J]. 材料导报, 2021, 35(24): 24052-24056.
[4] 张耀君, 张叶, 韩智超, 贺攀阳, 陈浩. 地质聚合物原位转化沸石分子筛的研究进展[J]. 材料导报, 2020, 34(23): 23033-23041.
[5] 周杰, 杨明莉. 电化学方法制备MOF膜的研究进展[J]. 材料导报, 2020, 34(19): 19043-19049.
[6] 邱军科, 王朋, 张迪, 石林, 张凰. 三维石墨烯基多孔碳材料的制备及对污染物的吸附性能研究进展[J]. 材料导报, 2020, 34(13): 13028-13035.
[7] 袁竞优, 贾庆明, 陕绍云. 碳羟基磷灰石纳米材料的研究进展[J]. 材料导报, 2020, 34(13): 13084-13090.
[8] 刘卓萌, 刘忠军, 姬帅, 雒设计. Ti5Si3的制备与应用研究进展[J]. 材料导报, 2019, 33(Z2): 175-180.
[9] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[10] 戎翔, 邓安仲, 李飞, 李丰恺. 柱胞夹芯复合材料设计加工及吸能性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 822-827.
[11] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[12] 叶绍凤, 刘文贤, 徐喜连, 沙东勇, 施文慧, 曹澥宏. 金属-有机框架(MOFs)衍生材料及其在储能器件和电催化领域的应用[J]. 材料导报, 2018, 32(13): 2129-2142.
[13] 王霞,安丽平,张晓涛,王喜明. 多孔材料用于木材干燥过程中VOCs吸附的研究进展和探讨[J]. 《材料导报》期刊社, 2018, 32(1): 93-101.
[14] 刘博煜, 龚有进, 刘强, 李伟, 吴晓楠, 熊顺顺, 胡胜, 汪小琳. 新型多孔材料在惰性气体Xe/Kr分离中的应用*[J]. 《材料导报》期刊社, 2017, 31(19): 51-59.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed