Please wait a minute...
材料导报  2022, Vol. 36 Issue (8): 21090227-10    https://doi.org/10.11896/cldb.21090227
  无机非金属及其复合材料 |
不同加载速率下饱水高延性喷射混凝土的单轴压缩试验
胡时1, 蔡海兵1, 马祖桥2, 袁助2, 丁祖德3
1 安徽理工大学土木建筑学院,安徽 淮南 232001
2 安徽省交通控股集团有限公司,合肥 230088
3 昆明理工大学建筑工程学院,昆明 650500
Experimental Study on Uniaxial Compression of Saturated High Ductility Shotcrete Under Different Loading Rates
HU Shi1, CAI Haibing1, MA Zuqiao2, YUAN Zhu2, DING Zude3
1 School of Civil Engineering and Architecture, Anhui University of Science and Technology, Huainan 232001, Anhui, China
2 Anhui Transportation Holding Group Co., Ltd., Hefei 230088, China
3 Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming 650500, China
下载:  全 文 ( PDF ) ( 10921KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了准确评价在芜黄高速公路雾岭头特长隧道工程应用的新型高延性喷射混凝土(HDSC)的性能表现,利用现场施工条件,对其开展了坍落度、回弹率研究及饱水状态下五种加载速率的单轴压缩试验,并结合扫描电镜、X射线衍射和核磁共振试验详细研究了该混凝土的各项性能。结果表明:现场工程使用的HDSC坍落度为168 mm,回弹率为8%,其性能优异,满足工程要求;吸水量呈先快速增加再缓慢增加最后维持稳定的变化趋势;饱和水状态下,随着加载速率增加,HDSC的峰值应力、弹性模量和储能密度极限值均呈上升趋势,峰值应变却呈下降趋势,并且其对“应变率效应”敏感,其压缩破坏过程可看成裂而不散的延性破坏。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡时
蔡海兵
马祖桥
袁助
丁祖德
关键词:  高延性喷射混凝土  混杂纤维  机制砂  加载速率  储能密度极限    
Abstract: In order to accurately evaluate the performance of a new high ductility shotcrete (HDSC) applied in super-long tunnel project of Wuhuang expressway, the tests of slump, rebound rate and the uniaxial compression tests of five loading rates under saturated water condition were carried out by using field construction conditions, and the properties were studied by combining the scanning electron microscopy, x-ray diffraction and nuclear magnetic resonance test. The results show that the slump of HDSC used in the field engineering is 168 mm, and the rebound rate is 8%, and its performance is excellent, which meets the engineering requirements. The water absorption increased rapidly at first, then slowly, and finally maintained a stable trend. Under saturated water condition, with the increase of loading rate, the peak stress, elastic modulus and energy sto-rage density limit of HDSC all show an upward trend, while the peak strain shows a downward trend, and is sensitive to the “strain rate effect”. Its compression failure process can be regarded as a ductile failure with cracks but no dispersion.
Key words:  high ductility shotcrete    hybrid fibers    manufactured sand    loading rate    energy storage density limit
出版日期:  2022-04-25      发布日期:  2022-04-27
ZTFLH:  U454  
基金资助: 国家自然科学基金(51778004;52168057);安徽省2019年度高校学科(专业)拔尖人才学术资助项目(gxbjZD10);安徽省2021年高校研究生科学研究项目(YJS20210381);安徽理工大学研究生创新基金项目(2021CX1006);安徽省交通控股集团有限公司科技攻关项目(JKKJ-2018-31)
通讯作者:  haibingcai@163.com   
作者简介:  胡时,2018年6月于皖西学院获得工学学士学位。现为安徽理工大学土木建筑学院博士研究生,主要研究领域为隧道工程及建筑材料,2021年获国家留学基金委资助赴新加坡国立大学联合培养。
蔡海兵,安徽理工大学土木建筑学院教授、博士研究生导师。2012年中南大学桥梁与隧道工程专业博士毕业。目前主要从事矿山建设工程和隧道工程等方面的研究工作。主持国家自然科学基金等科研项目10余项,获省、部级科学技术奖6项,发表论文100余篇。
引用本文:    
胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
HU Shi, CAI Haibing, MA Zuqiao, YUAN Zhu, DING Zude. Experimental Study on Uniaxial Compression of Saturated High Ductility Shotcrete Under Different Loading Rates. Materials Reports, 2022, 36(8): 21090227-10.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21090227  或          http://www.mater-rep.com/CN/Y2022/V36/I8/21090227
1 Hong K R. Tunnel Construction,2017,37(2),123(in Chinese).
洪开荣.隧道建设,2017,37(2),123.
2 Jiang Y, Wang L S. Chinese Journal of Rock Mechanics and Engineering,2002,21(9),1319(in Chinese).
姜云,王兰生.岩石力学与工程学报,2002,21(9),1319.
3 Sahmaran M, Li V C. Transportation Research Record,2010,2164(1),1.
4 Li V C. Journal of Advanced Concrete Technology,2003,1(3),215.
5 Singh M, Saini B, Chalak H. Journal of Building Engineering,2019,26,100851.
6 Li V C. International Journal of Concrete Structures Materials,2012,6(3),135.
7 Li V C, Wang S, Wu C. Materials Journal,2001,98(6),483.
8 Lin Y W, Scott A, Wotherspoon L, et al. ACI Materials Journal,2013,110(5),503.
9 Khalel H, Khan M, Starr A, et al. Construction and Building Materials,2021,306,124692.
10 Yao Z S, Wang C, Xue W P, et al. Journal of Materials Research and Technology,2021,14,888.
11 Shi F, Yin S, Pham T M, et al. Construction and Building Materials,2021,277,122335.
12 Wang Q, Yi Y, Ma G, et al. Cement Concrete Composites,2019,97,357.
13 Zhang Z, Zhang Q. Construction Building Materials,2018,161,420.
14 Lin J X, Song Y, Xie Z H, et al. Journal of Building Engineering,2020,29,101097.
15 Wang Y, Jian X, Yu J, et al. Journal of the American Ceramic Society,2020,103(12),7115.
16 Zhang Z, Liu J C, Xu X, et al. Construction and Building Materials,2020,262,120096.
17 Liu S, Liu W, Jiao F, et al. Environmental Pollution,2021,288,117799.
18 Li L. Research of modified desulfurization gypsum based new spraying layer structure. Master's Thesis, Anhui University of Science and Technology, China,2014(in Chinese).
李琳.改性脱硫石膏基新型喷层支护结构研究.硕士学位论文,安徽理工大学,2014.
19 Guan X, Li Y, Liu T, et al. Construction Building Materials,2019,201,461.
20 Hu S, Xu Y. Advances in Civil Engineering,2020,2020,5732018.
21 Du H, Gao H J, Dai P S. Cement Concrete Research,2016,83,114.
22 Wang H L, Li Q B. Journal of Tsinghua University (Science and Techno-logy),2007,47(9),1443(in Chinese).
王海龙,李庆斌.清华大学学报(自然科学版),2007,47(9),1443.
23 Wang H L, Li Q B. Journal of Hydroelectric Engineering,2007,26(1),84(in Chinese).
王海龙,李庆斌.水力发电学报,2007,26(1),84.
24 Zhang G H, Li Z L. Journal of Building Materials,2017,20(4),616(in Chinese).
张国辉,李宗利.建筑材料学报,2017,20(4),616.
25 Zhang Y R, Xu S X, Gao Y H, et al. Frontiers of Structural and Civil Engineering,2020,14(6),1509.
26 Yin H, Dong B Q, Ding Z, et al. Low Temperature Architecture Technology,2009,31(2),4(in Chinese).
殷慧,董必钦,丁铸,等.低温建筑技术,2009,31(2),4.
27 Wang H L, Yin W W, Cheng X D, et al. Journal of Hydraulic Enginee-ring,2019,50(2),225(in Chinese).
王海龙,银文文,程旭东,等.水利学报,2019,50(2),225.
28 Feng J, Chen B C, Sun W W, et al. Construction and Building Mate-rials,2021,280,122460.
29 Lee W K W, Deventer J S J V. Cement and Concrete Research,2007,37(6),844.
30 Kawabata Y, Ueda N, Miura T, et al. Cement and Concrete Composites,2021,121,104062.
31 Chen Z, Yang Y, Yao Y. Materials & Design,2013,44,500.
32 Xie H P, Ju Y, Li L Y. Chinese Journal of Rock Mechanics and Enginee-ring,2005,24(17),3003(in Chinese).
谢和平,鞠杨,黎立云.岩石力学与工程学报,2005,24(17),3003.
33 Liu J C, Ma L J, Zhang N, et al. Chinese Journal of Underground Space and Engineering,2021,17(3),975(in Chinese).
刘基程,马林建,张宁,等.地下空间与工程学报,2021,17(3),975.
34 Yang R Z, Xu Y, Chen P Y, et al. Materials Reports B:Research Papers,2020,34(4),4049(in Chinese).
杨荣周,徐颖,陈佩圆,等.材料导报:研究篇,2020,34(4),4049.
[1] 陈徐东, 冯璐, 张锦华, 刘志恒, 董文, 温荣鲲. 不同密度泡沫混凝土梁断裂特性及数值模拟[J]. 材料导报, 2022, 36(4): 20090086-7.
[2] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[3] 宣卫红, 徐文磊, 陈育志, 陈徐东, 程熙媛. 不同加载速率下高性能水泥基复合材料断裂性能研究[J]. 材料导报, 2021, 35(22): 22051-22056.
[4] 高育欣, 刘明, 曾超, 王福涛, 王鹏, 叶子, 张磊. 机制砂表面改性技术研究与应用[J]. 材料导报, 2021, 35(22): 22072-22078.
[5] 黄炜, 葛培, 李萌, 许洪飞. 混杂纤维再生砖骨料混凝土正交试验及卷积神经网络预测分析[J]. 材料导报, 2021, 35(19): 19022-19029.
[6] 于本田, 刘通, 王焕, 李盛, 谢超, 苏磊, 李彦林. 机制砂中片状颗粒对水泥胶砂性能的影响[J]. 材料导报, 2021, 35(14): 14058-14064.
[7] 褚洪岩, 蒋金洋, 李荷, 夏广林. 环保型细集料对超高性能混凝土力学性能的影响[J]. 材料导报, 2020, 34(24): 24029-24033.
[8] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[9] 崔涛, 何浩祥, 闫维明, 钱增志, 周大兴. 混杂纤维水泥基复合材料受压损伤本构模型及试验验证[J]. 材料导报, 2019, 33(20): 3413-3418.
[10] 张广泰, 田虎学, 李宝元, 张继飞, 王玉喜. 钢-聚丙烯混杂纤维混凝土的抗盐冻性能[J]. 《材料导报》期刊社, 2018, 32(14): 2396-2399.
[11] 张广田,刘娟红,隋宝龙,陈朝阳. 硅质机制砂改性剂的机理研究与应用[J]. 《材料导报》期刊社, 2017, 31(24): 56-62.
[12] 宋学锋,王骏,王艳. 纤维/混杂纤维-矿渣地质聚合物复合材料的弯曲强度与弯曲韧性*[J]. 材料导报编辑部, 2017, 31(22): 121-124.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[3] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[4] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[5] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[6] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[7] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
[8] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
[9] SU Li, NIU Ditao, LUO Daming. Research of Coral Aggregate Concrete on Mechanical Property and Durability[J]. Materials Reports, 2018, 32(19): 3387 -3393 .
[10] YU Fei, CUI Tianran, CHEN Dexian, YAO Wenhao, SUN Yiran, MA Jie, HE Yiwen. Research Advances in the Preparation of Cyclodextrin-based Composite Adsorbents and the Removal of Organic Pollutants in Water[J]. Materials Reports, 2018, 32(20): 3645 -3653 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed