Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 516-519    
  高分子与聚合物基复合材料 |
胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估
陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥
西华师范大学生命科学学院组织修复材料工程技术中心,南充 637009
Spinnability of Collagen-acetic Acid Mixing Solution and Mechanical Properties of Electrospinning Nanofiber Membrane Evaluation
CHEN Weiying, CHEN Zhenyong, YANG Zaijun, SHI Feng, LI Yunxiang
Collaboration Innovation Center for Tissue Repair Material Engineering Technology,College of Life Science, China West Normal University, Nanchong 637009, China
下载:  全 文 ( PDF ) ( 2102KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶原蛋白具有可吸收降解、生物相容性好等特性,被广泛应用于生物医学领域。但是目前胶原蛋白静电纺丝胶原膜力学强度不高,限制了其在生物医学领域中的应用。本研究利用Ⅰ型胶原海绵与不同浓度乙酸混合,研究了乙酸胶原混合溶液的可纺性,并对制备的电纺胶原膜进行了力学性能评估。结果发现,质量比为40%乙酸与胶原配制成10%的乙酸-胶原混合溶液制备的胶原膜表面平整光滑,纤维平均直径为(305.19±119.67) nm,纤维与纤维间层次清晰、呈网状交错分布;厚度为0.2 mm的电纺胶原膜弹性模量为(749.22±107.72) MPa,最大拉伸力平均值为(21.92±3.03) N,具有较强机械性能。本研究利用乙酸-胶原混合溶液进行静电纺丝,获得了具有良好的外观、机械强度好的纳米胶原膜,为进一步的细胞学实验提供了材料, 并有望开发成可满足不同临床需求的补片材料,具有一定的应用价值。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈卫英
陈真勇
杨在君
匙峰
黎云祥
关键词:  Ⅰ型胶原  乙酸  静电纺丝  力学特性  纳米胶原膜    
Abstract: Collagen have good absorbability and biocompatibility, thus it is widely used in biomedicine. However, the application of collagen nanofiber membrane from electrospinning technique is restricted in biomedical field, for its lower mechanical strength. In this study, the spinnability of type I collagen mixing solution with acetic acid was studied, and the mechanical properties of collagen nanofiber membrane were measured. The results showed that the collagen nanofiber membranes obtained by 10% mixed solution using 40% acetic acid were smooth. The average diameter of the fibers was (305.19±119.67) nm, and the layers of fibers were clear and created a continuous crossed net. The elastic modulus of the collagen nanofiber membrane of 0.2 mm was (749.22±107.72) MPa, and the average maximum tensile strength was (21.92±3.03) N. This indicated that collagen nanofiber membrane of 0.2 mm had good mechanical properties. The collagen nanofiber membrane from mixed solution of acetic acid/collagen has good appearance and mechanical strength. It can provide materials for further cell experiments, and be developed into medical patch materials, which can meet different clinical needs and have the value of practical application.
Key words:  type I collagen    acetic acid    electrospinning    mechanical properties    nanofiber membrane
                    发布日期:  2021-12-09
ZTFLH:  R318.08  
基金资助: 四川省教育厅重大培育项目(14CZ0015);西华师范大学英才基金项目(17YC321;17YC322)
通讯作者:  tougxx17@163.com   
作者简介:  陈卫英,西华师范大学副教授。2013年在中国科学院成都生物研究所获得理学博士学位。主要从事遗传与细胞生物学相关研究,以及动物胶原蛋白静电纺丝等生物医用产品研发。在国内外学术期刊上发表论文20余篇。
黎云祥,西华师范大学教授,硕士研究生导师,四川农业大学博士研究生导师。环境科学与工程学院院长,四川省组织修复材料工程技术协同创新中心主任,四川省生态学学会副理事长。主要研究方向:植物生态学、药用植物学、环境影响评价、课程与教学论等。
引用本文:    
陈卫英, 陈真勇, 杨在君, 匙峰, 黎云祥. 胶原-乙酸混合溶液静电纺丝可纺性及电纺胶原膜力学特性评估[J]. 材料导报, 2021, 35(z2): 516-519.
CHEN Weiying, CHEN Zhenyong, YANG Zaijun, SHI Feng, LI Yunxiang. Spinnability of Collagen-acetic Acid Mixing Solution and Mechanical Properties of Electrospinning Nanofiber Membrane Evaluation. Materials Reports, 2021, 35(z2): 516-519.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/516
1 李国英, 张忠楷, 付强, 等. 陕西科技大学学报, 2004, 22(3), 80.
2 Boland E D, Coleman B D, Barnes C P, et al. Acta Biomaterialia, 2005, 1(1), 115.
3 李晓龙, 陈婷, 张兴群. 食品与药品, 2016, 18(2), 83.
4 Kolacna L, Bakesova J, Varga F, et al. Physiological Research, 2007, 56(Suppl 1), S51.
5 周喻, 张静怡, 吴文惠. 中国生物制品学杂志, 2018, 31(3), 323.
6 Sculean A, Nikolidakis D, Schwarz F. Journal of Clinical Periodontology, 2008, 35, 106.
7 琚海燕, 但卫华, 刘秀英. 武汉纺织大学学报, 2016(3), 52.
8 黄艳萍, 但年华, 但卫华. 材料导报, 2019, 33(19), 3322.
9 Formalas A. U.S. Patent, 1975504, 1934.
10 Zhou J, Cao C B, Ma X L, et al. International Journal of Biological Macromodules, 2010, 47(4), 514.
11 肖世维, 但年华, 马文杰,等. 材料导报, 2015, 29(3), 49.
12 吴国良,任天斌,曹春红,等. 材料导报, 2010(S1), 385.
13 王红,张忠芮,黄嵩涛,等. 化工新型材料, 2014(4), 84.
14 牟玉洁,雷雄心,邢芳毓,等. 过程工程学报, 2018(5), 1076.
15 高超,李超明,徐玉龙,等. 中国修复重建外科杂志, 2019, 33(5), 628.
16 陈腊梅,曹婕,叶霖,等. 高等学校化学学报, 2016(3), 600.
[1] 岳青, 王绍德, 徐飞, 刘涛. 静电纺丝技术及其在各领域中的应用[J]. 材料导报, 2021, 35(Z1): 594-599.
[2] 徐梦婷, 马艳, 刘祖兰, 陈磊, 代方银, 李智. 后处理对静电纺丝素纤维膜性能的影响[J]. 材料导报, 2021, 35(14): 14180-14184.
[3] 李林刚, 胡雪燕, 李刚, 蔡以兵. 电纺Al2O3纳米纤维毡的制备及染料吸附脱色性能[J]. 材料导报, 2021, 35(12): 12008-12013.
[4] 汪海波, 徐成, 王梦想, 徐颖. 碳化龄期对水泥砂浆动态力学特性影响试验研究[J]. 材料导报, 2021, 35(12): 12087-12091.
[5] 王运, 张昌明, 张昱. 航空Al7050合金的静动态力学特性研究及JC本构模型构建[J]. 材料导报, 2021, 35(10): 10096-10102.
[6] 黄青武, 吴越, 宋武林, 丁雨葵. 碳纤维的电纺制备及结构表征[J]. 材料导报, 2020, 34(Z1): 164-168.
[7] 杨雪, 苏静, 王鸿博. 基于HDTMS的一步法构筑棉织物超疏水表面[J]. 材料导报, 2020, 34(Z1): 542-547.
[8] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[9] 盖海东, 冯春花, 董一娇, 赵倩, 李东旭. 纳米压痕技术应用于水泥基材料的研究进展[J]. 材料导报, 2020, 34(7): 7107-7114.
[10] 陈雪微, 刘巍, 高洪达. 离子液体在不同溶剂中对PVB静电纺丝的影响[J]. 材料导报, 2020, 34(24): 24160-24164.
[11] 蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展[J]. 材料导报, 2020, 34(23): 23064-23073.
[12] 王桂平, 喻伯鸣, 敖日格勒. 木质素基磁性多孔复合纳米碳纤维的制备及微波吸收性能[J]. 材料导报, 2020, 34(20): 20159-20164.
[13] 汪心坤, 赵芳, 王建江. 煅烧温度对Zn0.96Co0.04O纳米纤维吸波性能的影响[J]. 材料导报, 2020, 34(14): 14034-14038.
[14] 颜慧琼, 张薇, 王月, 何淞明, 赵芮, 廖月, 陈秀琼. 基于氧化-还原胺化反应改性海藻酸盐制备载药性电纺纳米复合纤维[J]. 材料导报, 2020, 34(12): 12139-12145.
[15] 王艳芝, 张玲杰, 张一风, 张旺玺. 电纺制备聚丙烯腈/氮化硼杂化复合纤维及其结构、性能研究[J]. 材料导报, 2020, 34(12): 12158-12162.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed