Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 285-293    
  金属与金属基复合材料 |
金属有机骨架材料固定化酶的研究进展
徐冉1,2, 李智慧1,2, 吴一楠1,2, 李风亭1,2
1 同济大学环境科学与工程学院,污染控制与资源化研究国家重点实验室,上海 200092
2 上海污染控制与生态安全研究院,上海 200092
Research Advances in Enzyme Immobilization on Metal-organic Frameworks
XU Ran1,2, LI Zhihui1,2, WU Yinan1,2, LI Fengting1,2
1 State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2 Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
下载:  全 文 ( PDF ) ( 6047KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架材料(MOFs)凭借其较高的比表面积和孔体积、可设计和调控的孔径及结构,以及化学和热稳定性等特点,克服了传统固定化酶载体的孔径尺寸不可控、制备成本高、酶浸出、产物稳定性差等不足,近年来成为一类新型酶固定化载体。首先,本文分类总结了MOFs固定化酶的合成策略,包括后合成包装和从头合成封装(仿生矿化、共沉淀和机械化学封装);然后进一步介绍了多级孔MOFs的孔道设计策略及其固定化酶体系。这种具备分级孔道结构的MOFs用于固定化酶既可以保证酶的较高负载率,又能提高酶催化底物的扩散速率;此外,本文还介绍了MOFs共固定化多酶体系及具有类酶特性的仿生MOFs固定化酶方面的研究。MOFs特有的孔道结构可以大大缩短酶与底物之间的扩散距离,同时充分利用了酶级联反应的中间产物,可以显著提高酶催化活性;文章最后总结了MOFs固定化酶复合材料在生物传感和污染物催化净化领域的主要应用,提出了MOFs固定化酶研究中的一些瓶颈问题,以期为该材料的进一步研究和未来产业化提供借鉴和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐冉
李智慧
吴一楠
李风亭
关键词:  金属有机骨架材料  固定化酶  多级孔  级联反应  生物传感  污染物催化    
Abstract: The traditional immobilization matrices for enzymes have limitations of uncontrollable pore size distribution, high cost, leaching of enzymes, and poor stability. Metal-organic frameworks (MOFs) are considered as a new class of solid supports for enzyme immobilization due to their intrinsic properties, such as high surface area and pore volume, tunable pore size and structure, and chemical and thermal stability. Firstly, this review summarizes the preparation strategies for enzyme immobilization in MOF materials by the following two major categories, postsynthetic packaging and de novo encapsulation (biomimetic mineralization, co-precipitation, and mechanochemical encapsulation). Secondly, it introduces the design strategies of hierarchically porous MOFs for enzyme immobilization, which enable the achievement of high enzyme loading and the improvement of substrate diffusion rate. Thirdly, it introduces some advances on multienzyme systems in MOFs and biomimetic MOFs with enzyme-like activity for enzyme immobilization. The special pore structure of MOFs can greatly shorten the diffusion distance between enzyme and substrate, make full use of the intermediate products of enzyme cascade reaction, and therefore could significantly improve the catalytic activity of enzyme. Finally, the main applications of MOF-enzyme composites in biosensing and catalytic removal of pollutants are summarized, and some bottleneck problems are put forward to provide reference for the further research and future industrialization of MOF-enzyme composites.
Key words:  metal-organic frameworks (MOFs)    enzyme immobilization    hierarchically pore structure    cascade reaction    biosensing    pollutant catalysis
                    发布日期:  2021-12-09
ZTFLH:  O641.4  
基金资助: 国家自然科学基金(21777119)
通讯作者:  51n@tongji.edu.cn   
作者简介:  徐冉,同济大学环境科学与工程学院副教授、硕士研究生导师。2004年毕业于新加坡国立大学化学与环境工程系,获博士学位。主要从事水处理技术和绿色环境功能材料研究。在Journal of Environmental Quality、Chemical Engineering Journal、ACS Applied Materials and Interfaces、Bioresource Technology、《同济大学学报》等期刊发表论文70余篇,主持参与多项国家及省部级科研项目,多次获得省部级科技奖项,授权专利13项。
吴一楠,同济大学环境科学与工程学院副教授、博士研究生导师。2012年毕业于同济大学环境科学与工程专业获博士学位。主要从事多层次孔结构材料的合成、金属有机骨架材料的绿色宏量制备及先进应用基础研究。在Angewandte Chemie-International Edition、Small、Chemical Communications、Journal of Hazardous Materials等国际期刊发表论文50余篇,主持多项国家及省部级科研项目,授权发明专利7项。
引用本文:    
徐冉, 李智慧, 吴一楠, 李风亭. 金属有机骨架材料固定化酶的研究进展[J]. 材料导报, 2021, 35(z2): 285-293.
XU Ran, LI Zhihui, WU Yinan, LI Fengting. Research Advances in Enzyme Immobilization on Metal-organic Frameworks. Materials Reports, 2021, 35(z2): 285-293.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/285
1 陈海欣, 张赛男, 赵力民, 等. 生物加工过程, 2020, 18(1), 88.
2 Li S, Yang X F, Yang S, et al. Computational and Structural Biotechno-logy Journal, 2012, 2(3), 1.
3 Sheldon R A, Pelt S V. Chemical Society Reviews, 2013, 42(15), 6223.
4 DiCosimo R, McAuliffe J, Poulose A J, et al. Chemical Society Reviews, 2013, 42(15), 6437.
5 解婷婷, 迟莉娜, 刘瑞婷, 等. 化工进展, 2019, 38(6), 2889.
6 范铮, 唐咸昌, 张旭, 等. 化工进展, 2019, 38(10), 4606.
7 Furukawa H, Cordova K E, O'Keeffe M, et al. Science, 2013, 341(6149), 974.
8 Li H, Wang K C, Sun Y J, et al. Materials Today, 2018, 21(2), 108.
9 郑丽君, 龚奇菡, 李雪静, 等. 化工进展, 2017, 36(11), 4116.
10 田玉雪, 许佩瑶, 汪黎东, 等. 应用化工, 2018, 47(4), 810.
11 Gangu K K, Maddila S, Mukkamala S B, et al. Inorganica Chimica Acta, 2016, 446, 61.
12 Jiao L, Jiang H L. Chem, 2019, 5(4), 786.
13 Jiao L, Seow J Y R, Skinner W S, et al. Materials Today, 2019, 27, 43.
14 Kumar P, Deep A, Kim K H. Trac Trends in Analytical Chemistry, 2015, 73, 39.
15 Liang W, Ricco R, Maddigan N K, et al. Chemistry of Materials, 2018, 30(3), 1069.
16 Zhou Z X, Gao Z J, Shen H, et al. ACS Applied Materials & Interfaces, 2020, 12(6), 7510.
17 Huang S M, Kou X X, Shen J, et al. Angewandte Chemie International Edition, 2020, 59(23), 8786.
18 Lian X Z, Fang Y, Joseph E, et al. Chemical Society Reviews, 2017, 46(11), 3386.
19 Mehta J, Bhardwaj N, Bhardwaj S K, et al. Coordination Chemistry Reviews, 2016, 322, 30.
20 Xu A W, Ma Y R, Cölfen H. Journal of Materials Chemistry, 2007, 17(5), 415.
21 Naseri M, Pitzalis F, Carucci C, et al. ChemCatChem, 2018, 10(23), 5425.
22 Patil P D, Yadav G D. ChemistrySelect, 2018, 3(17), 4669.
23 Wang G C, Cao R Y, Chen R, et al. Proceedings of the National Academy of Sciences, 2013, 110(19), 7619.
24 Liang K, Ricco R, Doherty C M, et al. Nature Communications, 2015, 6, 7240.
25 Chen G S, Huang S M, Kou X X, et al. Angewandte Chemie International Edition, 2019, 58(5), 1463.
26 Lyu F J, Zhang Y F, Zare R N, et al. Nano Letters, 2014, 14(10), 5761.
27 Uzarevic K, Wang T C, Moon S Y, et al. Chemical Communications, 2016, 52(10), 2133.
28 Julien P A, Uzarevic K, Katsenis A D, et al. Journal of the American Chemical Society, 2016, 138(9), 2929.
29 Wei T H, Wu S H, Huang Y D, et al. Nature Communications, 2019, 10(1), 5002.
30 Wu Y N, Zhou M M, Zhang B R, et al. Nanoscale, 2014, 6(2), 1105.
31 Li P, Chen Q S, Wang T C, et al. Chem, 2018, 4(5), 1022.
32 Sun Y Y, Shi J F, Zhang S H, et al. Industrial & Engineering Chemistry Research, 2019, 58(28), 12835.
33 Lykourinou V, Chen Y, Wang X S, et al. Journal of the American Chemical Society, 2011, 133(27), 10382.
34 Li P, Modica J A, Howarth A J, et al. Chem, 2016, 1(1), 154.
35 Lian X Z, Chen Y P, Liu T F, et al. Chemical Science, 2016, 7(12), 6969.
36 Cheng K P, Frantisek S, Lv Y Q, et al. Small, 2019, 15(44), 1902927.
37 Van Oers M, Rutjes F, Van Hest J. Current Opinion in Biotechnology, 2014, 28, 10.
38 郭华, 张蕾, 董旭, 等. 化学进展, 2020, 32(4), 392.
39 Sperl J M, Sieber V. ACS Catalysis, 2018, 8(3), 2385.
40 Drout R J, Robison L, Farha O K. Coordination Chemistry Reviews, 2019, 381, 151.
41 Zhao M Y, Li Y, Ma X J, et al. Talanta, 2019, 200, 293.
42 Wu X L, Ge J, Yang C, et al. Chemical Communications, 2015, 51(69), 13408.
43 Song J Y, He W T, Shen H, et al. Chemical Engineering Journal, 2019, 363, 174.
44 Zhong X, Xia H, Huang W, et al. Chemical Engineering Journal, 2020, 381.
45 Liu X, Qi W, Wang Y F, et al. ACS Applied Materials & Interfaces, 2018, 10(39), 33407.
46 赵睿南, 胡满成, 李淑妮, 等. 化学学报, 2017, 75(3), 293.
47 智文静. 多功能化HRP@MOFs生物复合材料及其应用于有害污染物的处理研究. 硕士学位论文, 江苏大学, 2020.
48 庞仕龙. 介孔金属有机骨架复合材料固定化漆酶及应用. 硕士学位论文, 北京林业大学, 2016.
49 Mahmoodi N M, Abdi J. Journal of Industrial and Engineering Chemistry, 2019, 80, 606.
50 Gkaniatsou E, Sicard C, Ricoux R, et al. Angewandte Chemie, 2018, 57(49), 16141.
51 Wu E H, Li Y X, Huang Q, et al. Chemosphere, 2019, 233, 327.
52 叶鹏, 胡玲玲, 杜育芝, 等. 浙江理工大学学报(自然科学版), 2016, 35(6), 899.
[1] 崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
[2] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[3] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[4] 王成君, 段志英, 苏琼, 王爱军, 孟淑娟. 以多级孔碳为支撑基体的复合相变材料在光热转换与存储方面的研究进展[J]. 材料导报, 2020, 34(23): 23074-23080.
[5] 徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
[6] 徐群娜, 仇瑞杰, 马建中. 聚合物基MOFs复合材料的制备及应用[J]. 材料导报, 2020, 34(15): 15153-15162.
[7] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[8] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[9] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[10] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[11] 陈卫丰, 吕果, 陶华超, 陈少娜, 李德江, 代忠旭. 石墨烯量子点的制备及在生物传感器中的应用研究进展[J]. 材料导报, 2019, 33(7): 1156-1162.
[12] 冯晓倩, 顾文, 张霞, 蒋浩. 基于有机薄膜晶体管与有机电化学晶体管的生物传感器研究进展[J]. 材料导报, 2019, 33(7): 1243-1250.
[13] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[14] 葛胜涛, 邓先功, 毕玉保, 王军凯, 李赛赛, 韩磊, 张海军. 多级孔材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2195-2201.
[15] 李笑迎,白文静,陶 凯,梁云霄. 大孔/介孔多级孔SiO2的制备及其在固定化脂肪酶中的应用[J]. 《材料导报》期刊社, 2018, 32(10): 1695-1700.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed