Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (13): 2195-2201    https://doi.org/10.11896/j.issn.1005-023X.2018.13.009
  无机非金属及其复合材料 |
多级孔材料研究进展
葛胜涛, 邓先功, 毕玉保, 王军凯, 李赛赛, 韩磊, 张海军
武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉 430081
Research Progress of Hierarchical Porous Materials
GE Shengtao, DENG Xiangong, BI Yubao, WANG Junkai, LI Saisai, HAN Lei, ZHANG Haijun
The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081
下载:  全 文 ( PDF ) ( 2869KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 多孔材料具有孔隙率高、比表面积大、导热系数低、体积密度小及化学性质稳定等优点,在吸附与分离、催化剂载体、隔热材料、能量储存、传感器等领域拥有广阔的应用前景。基于孔直径的大小可将多孔材料分为三类:孔径大于50 nm的大孔材料(Macroporous materials),孔径介于2~50 nm的介孔材料(Mesoporous materials)和孔径小于2 nm的微孔材料(Microporous materials)。但是,由于孔径的限制,这三类材料的应用均存在一定的局限性。多级孔材料兼具通透性好、孔隙结构发达、体积密度小、比表面积和孔体积大等优点,打破了传统单级孔材料孔结构单一的局限,因此越来越受到研究人员的关注。然而,多级孔材料在制备中仍存在较多问题。例如,其合成过程通常会涉及到两种及两种以上的方法,制备工艺复杂;现有的多级孔材料的制备成本高,孔结构难以控制。因此,研究者们主要从优化多级孔材料的制备工艺以及降低生产成本等方面入手,制备出孔径均一且可控的多级孔材料。   多级孔材料主要有大孔-介孔材料(Macro-mesoporous materials)、微孔-介孔材料(Micro-mesoporous materials)以及含有两种或多种不同孔径的介孔-介孔材料(Meso-mesoporous materials)。大孔-介孔材料常见的制备方法有模板法、发泡法、溶胶-凝胶法及熔盐法等;微孔-介孔材料的主要制备方法有化学活化法、模板法和水热法等;介孔-介孔材料的制备方法主要有水热法、模板法、溶胶-凝胶法及自组装法等。本文综述了近年来多级孔材料的最新研究进展,分别对大孔-介孔、微孔-介孔及介孔-介孔材料的制备方法进行了介绍,并简要分析了未来本领域研究的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
葛胜涛
邓先功
毕玉保
王军凯
李赛赛
韩磊
张海军
关键词:  多级孔材料  大孔-介孔材料  微孔-介孔材料  介孔-介孔材料    
Abstract: Porous materials have been widely applied in adsorption and separation, catalyst supports, thermal insulating materials, energy storage, sensors, etc., owning to their high porosity, high surface area, low thermal conductivity and bulk density, and good chemical inertness. Porous materials can be classified into three categories according to pore size: macroporous materials with the aperture greater than 50 nm, mesoporous materials that possess a pore size between 2 nm to 50 nm and microporous materials with pore diameter less than 2 nm. However, their applications suppressed to a certain extent owing to the limited pore size. Hierarchical porous materials enjoy the advantages compared to the conventional porous materials including high permeability, elaborate pore structure, low bulk density, large surface area and pore volume, and have been provoking continuously increasing research interest. On the other hand, the conventional preparation process for hierarchical porous materials still suffer several problems, including complicated preparation process, high-cost preparation and difficulty in controlling pore structure. Thus, researchers endeavor to optimize hierarchical porous materialsfabrication process and reduce the cost of preparation, aiming to prepare uniform-and controllable-sized hierarchical porous materials.   Hierarchical porous materials mainly include macro-mesoporous materials, macro-mesoporous materials and meso-mesoporous materials with bimodal or multiple mesopores. Macro-mesoporous materials can be produced by a variety of methods including template method, foam-gelcasting, sol-gel method and molten salt method. The major routes to preparing micro-mesoporous materials are chemical activation, template method and hydrothermal method. Meso-mesoporous materials are commonly fabricated through hydrothermal method, template method, sol-gel method and self-assembly synthetic procedure. This paper gives a summary of research efforts in recent years with respect to the hierarchical porous materials, and introduces the fabrication process of macro-mesoporous, micro-mesoporous materials and meso-mesoporous materials. The development trends of the future research are also discussed.
Key words:  hierarchical porous materials    macro-mesoporous materials    micro-mesoporous materials    meso-mesoporous materials
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  TB32  
基金资助: 国家自然科学基金面上资助项目(51672194);湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602)
通讯作者:  张海军:通信作者,男,1970年生,博士,教授,主要研究方向为耐火材料及高技术陶瓷 Tel:027-68862829 E-mail:zhanghaijun@wust.edu.cn   
作者简介:  葛胜涛:男,1994年生,硕士研究生,研究方向为莫来石多级孔陶瓷的制备 E-mail:876270837@qq.com
引用本文:    
葛胜涛, 邓先功, 毕玉保, 王军凯, 李赛赛, 韩磊, 张海军. 多级孔材料研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2195-2201.
GE Shengtao, DENG Xiangong, BI Yubao, WANG Junkai, LI Saisai, HAN Lei, ZHANG Haijun. Research Progress of Hierarchical Porous Materials. Materials Reports, 2018, 32(13): 2195-2201.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.009  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2195
1 Gu F N, Wei F, Yang J Y, et al. New strategy to synthesis of hierarchical mesoporous zeolites[J].Chemistry of Materials,2010,22(8):2442.
2 Fan L Z, Hu Y S, Maier J, et al. High electroactivity of polyaniline in supercapacitors by using a hierarchically porous carbon monolith as a support[J].Advanced Functional Materials,2007,17(16):3083.
3 Chmiola J, Largeot C, Taberna P L, et al. Monolithic carbide-derived carbon films for micro-supercapacitors[J].Science,2010,328(5977):480.
4 Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J].Advanced Materials,2006,18:2073.
5 Deshpande A S, Burgert I, Paris O. Hierarchically structured ceramics by high-precision nanoparticle casting of wood[J].Small,2006,2(8-9):994.
6 Shin Y, Liu J, Wang L Q, et al. Ordered hierarchical porous ma-terials: Towards tunable size-and shape-selective microcavities in nanoporous channels[J].Angewandte Chemie,2000,112(15):2814.
7 Chen M, Zhu L, Dong Y, et al. Waste-to-resource strategy to fabricate highly porous whisker-structured mullite ceramic membrane for simulated oil-in-water emulsion wastewater treatment[J].ACS Sustainable Chemistry & Engineering,2016,4:s12.
8 Luo W, Wei J, Deng Y H, et al. Progress on the fabrication of ordered mesoporous materials with large pores by using novel amphiphilic block copolymers as Templates[J].Journal of Inorganic Materials,2017,32(1):1(in Chinese).
罗维,魏晶,邓勇辉,等.新型两亲性嵌段共聚物导向合成有序大孔径介孔材料的研究进展[J].无机材料学报,2017,32(1):1.
9 Chen C C, Chen H R, Ye Z Q, et al. Alkylation catalysis over the WO3/ZrO2 solid acid catalyst with hierarchically porous structure[J].Acta Chimica Sinica,2012,70(4):423(in Chinese).
陈崇城,陈航榕,叶争青,等.多级孔结构WO3/ZrO2固体酸催化剂的烷基化催化性能研究[J].化学学报,2012,70(4):423.
10 Tao Yousheng, Kanoh Hirofumi, Kaneko Katsumi, et al. ZSM-5 monolith of uniform mesoporous channels[J].Journal of the American Chemical Society,2003,125(20):6044.
11 Liu H, Ernst H, Freude D, et al. In situ11B MAS NMR study of the synthesis of a boron-containing MFI type zeolite[J].Microporous & Mesoporous Materials,2002,54(3):319.
12 Dong A, Wang Y, Tang Y, et al. Mechanically stable zeolite monoliths with three-dimensional ordered macropores by the transformation of mesoporous silica spheres[J].Advanced Materials,2002,14(20):1506.
13 Rhodes K H, Davis S A, Caruso F, et al. Hierarchical assembly of zeolite nanoparticles into ordered macroporous monoliths using core-shell building blocks[J].Chemistry of Materials,2000,12(10):2832.
14 Davis M E. Ordered porous materials for emerging applications[J].Cheminform,2002,33(40):813.
15 Giunta P R, Washington R P, Campbell T D, et al. Preparation of mesoporous silica monoliths with ordered arrays of macrochannels templated from electric-field-iriented hydrogels[J].Angewandte Chemie,2004,43(12):1505.
16 Holland B T, Abrams L, Stein A. Dual templating of macroporous silicates with zeolitic microporous frameworks[J].Journal of the American Chemical Society,1999,121(17):4308.
17 Beck J S, Vartuli J C, Schmitt K D, et al. A new family of mesosporous molecular sieves prepared with liquid crystal templates[J].Journal of the American Chemical Society,1992,114(27):10834.
18 Chen C, Luo C, Zhang X H, et al. Hierarchical porous carbon materials prepared by direct carbonization of Al-PCP as Pt-catalyst support for oxygen reduction reaction[J].New Journal of Chemistry,2017,41(15):7432.
19 Liu Y, Kirchesch P, Graule T, et al. Nanoparticle prepared mecha-nically stable hierarchically porous silica granulates and their application as oxygen carrier supports for chemical looping combustion[J].Journal of Materials Chemistry A,2015,3(22):11863.
20 Dey A, Kayal N, Chakrabarti O, et al. Permeability and nanoparticle filtration assessment of cordierite-bonded porous SiC ceramics[J].Industrial & Engineering Chemistry Research,2013,52(51):18362.
21 Zhu J B, Yan H. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3[J].International Journal of Minerals Metallurgy & Materials,2017,24(3):309.
22 Talou M H, Camerucci M A. Processing of porous mullite ceramics using novel routes by starch consolidation casting[J].Journal of the European Ceramic Society,2015,35(3):1021.
23 Kustova M, Egeblad K, Kake Zhu A, et al. Versatile route to zeolite single crystals with controlled mesoporosity: In situ sugar decomposition for templating of hierarchical zeolites[J].Chemistry of Ma-terials,2007,19(12):2915.
24 Fan W, Snyder M A, Kumar S, et al. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity[J].Nature Materials,2008,7(12):984.
25 Deng Y, Liu C, Yu T, et al.Facile synthesis of hierarchically porous carbons from dual colloidal crystal/block copolymer template approach[J].Chemistry of Materials,2007,19(13):3271.
26 Li Q, Jiang R, Dou Y, et al. Synthesis of mesoporous carbon spheres with a hierarchical pore structure for the electrochemical double-layer capacitor[J].Carbon,2011,49(4):1248.
27 Tao G, Zhang L, Chen L, et al. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction[J].Carbon,2015,86:108.
28 Mille C, Corkery R W. A structural and thermal conductivity study of highly porous, hierarchical polyhedral nanofoam shells made by condensing silica in microemulsion films on the surface of emulsified oil drops[J].Journal of Materials Chemistry A,2012,1(5):1849.
29 Wang X, Li J H, Zhang H Y, et al. High-porosity Ba1-xSrxTiO3 ceramics from particle-stabilized emulsions[J].Ceramics Internatio-nal,2014,40(7):10401.
30 Ge H, Wang G, Yuan B, et al. Fabrication and microstructure of porous SiC ceramics using suspension emulsions as pore-forming agents[J].Ceramics International,2014,40(8):11705.
31 Vijayan S, Narasimman R, Prabhakaran K. Freeze gelcasting of naphthalene-in-aqueous alumina slurry emulsions for the preparation of macroporous alumina ceramics[J].Ceramics International,2015,41(1):1487.
32 Freitas C, Vitorino N, Ribeiro M J, et al. Extrusion of ceramic emulsions: Preparation and characterization of cellular ceramics[J].Applied Clay Science,2015,109:15.
33 Chen H R, Shi J L, Gao J H. Synthesis and characteristic of hierarchically porous zirconium oxide doped with yttrium[J].Solid State Phenomena,2007,121:5.
34 Li S, Wang C A, Li S. Hierarchically porous YSZ hollow spheres with ultralow thermal conductivity[J].Materials Research Bulletin,2014,57(23):79.
35 Deng X G, Wang J K, Zhang H J, et al. Effects of firing temperature on the microstructures and properties of porous mullite ceramics prepared by foam-gelcasting[J].Advances in Applied Ceramics,2016,115(4):204.
36 Han L, Li F, Deng X, et al. Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures[J].Journal of the European Ceramic Society,2017,37(7):2717.
37 Young A C, Omatete O O, Janney M A, et al. Gelcasting of alumina[J].Journal of the American Ceramic Society,1991,74(3):612.
38 Wang H M. The synthesis and propertiesof inorganic hierarchically porous materials[D].Dalian:Dalian University of Technology,2016(in Chinese).
王洪敏.无机多级孔材料的制备及其性能研究[D].大连:大连理工大学,2016.
39 He J, Li X, Su D, et al. Ultra-low thermal conductivity and high strength of aerogels/fibrous ceramic composites[J].Journal of the European Ceramic Society,2016,36(6):1487.
40 Dong X, Sui G, Liu J, et al. Mechanical behavior of fibrous ceramics with a bird’s nest structure[J].Composites Science & Technology,2014,100:92.
41 Kan X, Ding J, Yu C, et al. Low-temperature fabrication of porous ZrC/C composite material from molten salts[J].Ceramics International,2017,43(8):6377.
42 Ding J. Basic research of carbon material modification and the preparation of microporous lightweight materials in molten salt media[D].Wuhan:Wuhan University of Science and Technology,2013(in Chinese).
丁军.熔盐介质中碳材料改性及微孔轻质材料制备的基础研究[D].武汉:武汉科技大学,2013.
43 Kocjan A, Shen Z. Colloidal processing and partial sintering of high-performance porous zirconia nanoceramics with hierarchical heterogeneities[J].Journal of the European Ceramic Society,2013,33(15):3165.
44 Lewis J A. Colloidal processing of ceramics[J].Journal of the American Ceramic Society,2004,83(10):2341.
45 Du J, Lai X, Yang N, et al. Hierarchically ordered macro-mesoporous TiO2-graphene composite films: Improved mass transfer, reduced charge recombination, and their enhanced photocatalytic acti-vities[J].ACS Nano,2011,5(1):590.
46 Zhang X, Xu G, Chen Z, et al. Solvothermal preparation and gas sensing properties of hierarchical pore structure SnO2 produced using grapefruit peel as a bio-template[J].Ceramics International,2017,43(5):4112.
47 Yang Z X, Xia Y D, Mokaya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template[J].Advanced Materials,2004,16(8):727.
48 Jin Z Y, Li T, Lu A H. Nitrogen-enriched hierarchical porous carbon for carbon dioxide adsorption and separation[J].Acta Physico-Chimica Sinica,2015,31(8):1602(in Chinese).
金振宇,李曈,陆安慧.富氮多级孔炭材料的制备及其吸附分离CO2的性能[J].物理化学学报,2015,31(8):1602.
49 Xing W, Zhuo S P, Gao X L, et al. Preparation of micro-meso hierarchical porous carbon and studies in its electrochemical capacitive performances[J].Acta Chimica Sinica,2009,67(13):1430(in Chinese).
邢伟,禚淑萍,高秀丽,等.微孔-介孔多级孔炭材料的制备及电化学电容性能研究[J].化学学报,2009,67(13):1430.
50 Williams P T, Reed A R. Development of activated carbon pore structure via physical and chemical activation of biomass fibre waste[J].Biomass & Bioenergy,2006,30(2):144.
51 Ariyadejwanich P, Tanthapanichakoon W, Nakagawa K. Preparation and characterization of mesoporous activated carbon from waste tires[J].Carbon,2003,41(1):157.
52 Barakov R, Shcherban N, Yaremov P, et al. Low-temperature and alkali-free dual template synthesis of micro-mesoporous aluminosilicates based on precursors of zeolite ZSM-5[J].Journal of Materials Science,2016,51(8):4002.
53 Chen A, Wang Y, Li Q, et al. Synthesis of nitrogen-doped micro-mesoporous carbon for supercapacitors[J].Journal of the Electrochemical Society,2016,163(9):A1959.
54 Hadjar H, Hamdi B, Ania C O. Adsorption of p-cresol on novel dia-tomite/carbon composites[J].Journal of Hazardous Materials,2011,188(1-3):304.
55 Ma C, Chen X, Long D, et al.High-surface-area and high-nitrogen-content carbon microspheres prepared by a pre-oxidation and mild KOH activation for superior supercapacitor[J].Carbon,2017,118:699.
56 Hou K K. Synthesis of ordered mesoporus carbons by two-step method in queous solution[D].Dalian:Dalian University of Techno-logy,2014(in Chinese).
侯珂珂.水相体系中两步法合成有序介孔碳材料[D].大连:大连理工大学,2014.
57 Sato S, Takahashi R, Sodesawa T, et al. Bimodal porous Pd-silica for liquid-phase hydrogenation[J].Applied Catalysis A General,2005,284(1):247.
58 Wang W, Ye K, Long H, et al. Facile preparation of hierarchically meso-mesoporous silicas withultra-large pores and pore volumes via partitioned cooperative self-assembly process[J].Materials Letters,2016,167:54.59 Wang Y, Liu F, Yang Q, et al.Mesoporous ZnFe2O4 prepared through hard template and its acetone sensing properties[J].Ma-terials Letters,2016,183:378.
60 Nguyen D, Wang W, Long H, et al. A facile and controllable multi-templating approach based on a solo nonionic surfactant to preparing nanocrystalline bimodal meso-mesoporous titania[J].Microporous & Mesoporous Materials,2016,230:177.
61 Yin W. Preparation of three-dimensionally interconnected meso/mesoporous Ho3+ doped TiO2 nanoparticles with enhanced photocatalytic activity[J].Advanced Materials Research,2013,652-654:779.
62 Sun Z Q, Zhou H S, Xie Y. Preparation and characterization of TiO2 mesoporous material[J].Journal of Synthetic Crystals,2007,36(3):679(in Chinese).
孙竹青,周豪慎,谢毅.TiO2介孔材料的制备及其结构表征[J].人工晶体学报,2007,36(3):679.
63 An J G, Gao X, Jin J J, et al. Mesoporous zeolite ZSM-5 synthesized via gel conversion with polyethyleneglycolas template and its cataly-tic performance[J].Journal of Inorganic Materials,2015,30(11):1148(in Chinese).
安建国,高翔,金军江,等.以聚乙二醇为模板凝胶转化制备介孔ZSM-5沸石及其催化性能[J].无机材料学报,2015,30(11):1148.
64 Tan X, Lu L, Wang L, et al.Facile synthesis of bimodal mesoporous Fe3O4@SiO2 composite for efficient removal of methylene blue[J].European Journal of Inorganic Chemistry,2015,2015(18):2928.
65 Nait-Ali B, Haberko K, Vesteghem H, et al. Thermal conductivity of highly porous zirconia[J].Journal of the European Ceramic Society,2006,26(16):3567.
66 Wang L, Lin K, Di Y, et al. High-temperature synthesis of stable-ordered mesoporous silica materials using mesoporous carbon as a hard template[J].Microporous & Mesoporous Materials,2005,86(1-3):81.
[1] 谢全灵,邵文尧,马寒骏,刘晨然,洪专. 基于二维石墨烯纳米材料优化高分子分离膜的研究进展[J]. 材料导报, 2019, 33(17): 2958-2965.
[2] 马依拉·克然木, 李首城, 胡天浩, 崔静洁. 石墨烯的电化学生物传感器研究进展[J]. 材料导报, 2019, 33(z1): 57-61.
[3] 胡厅, 万红, 华叶, 龚瑾瑜, 陈兴宇. 石墨表面TiC梯度涂层的制备及结构调制[J]. 材料导报, 2019, 33(z1): 74-77.
[4] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[5] 王忠辉, 辛勇. 高分子链运动对氧气扩散行为的影响[J]. 材料导报, 2019, 33(8): 1293-1297.
[6] 叶凯, 梁风, 姚耀春, 马文会, 杨斌, 戴永年. 直流电弧等离子体法制备纳米材料的研究进展[J]. 材料导报, 2019, 33(7): 1089-1098.
[7] 崔龙辰, 王军军, 黄伟九. 类聚合物碳薄膜的制备及其摩擦学研究进展[J]. 材料导报, 2019, 33(5): 797-804.
[8] 陈道鸽, 熊向源, 龚妍春, 李资玲, 李玉萍. 含Pluronic高分子纳米粒子在药物释放体系的研究现状[J]. 材料导报, 2019, 33(3): 517-521.
[9] 林琳, 陈景民, 王会, 李久盛, 陈晋阳, 曾祥琼. 皮肤敷料的研究进展[J]. 材料导报, 2019, 33(1): 65-72.
[10] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[11] 李博, 徐晓婷, 郑雪晴. 离子液体在有机光电转换器件中的应用研究进展[J]. 材料导报, 2018, 32(23): 4116-4124.
[12] 王俊杰, 房晶瑞, 汪澜. 水泥生产全过程硫循环机制的研究进展[J]. 材料导报, 2018, 32(23): 4160-4169.
[13] 杨贺珍, 冉奋. 超级电容器电解质研究进展[J]. 材料导报, 2018, 32(21): 3697-3705.
[14] 王志芳,宣承楷,刘雪敏,施雪涛. 环糊精衍生物水凝胶材料的研究进展[J]. 材料导报, 2018, 32(19): 3456-3464.
[15] 董文举, 孔令斌, 康龙, 冉奋. 超级电容器电极材料及器件的柔性化与微型化[J]. 材料导报, 2018, 32(17): 2912-2919.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed