Please wait a minute...
材料导报  2021, Vol. 35 Issue (z2): 1-7    
  无机非金属及其复合材料 |
铜铟镓硒太阳能电池性能提升方法
丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦
上海第二工业大学工学部环境与材料工程学院,上海 201209
Methods to Improve Performance of Copper Indium Gallium Selenium Solar Cells
DING Suying, WU Zihua, XIE Huaqing, WANG Yuanyuan, LUAN Fuyuan, YU Siqi
College of Environmental and Materials Engineering, Shanghai Polytechnic University, Shanghai 201209, China
下载:  全 文 ( PDF ) ( 3539KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 铜铟镓硒(CIGS)太阳能电池具有转换效率高、生产成本低、不衰退和污染小等优点,是很有前景的新型薄膜太阳能电池,其实验室测试光电转换效率已达23.35%。探究CIGS的光电转化机制和器件性能的提升方法对推动光伏产业的发展具有重要意义。本文综合分析了CIGS的发展历程、原理、结构和提升其性能的主要技术途径。重点介绍了:(1) NaF-PDT、KF-PDT、RbF-PDT和Cs-PDT等多种碱金属的后沉积处理技术的发展;(2) 采用Zn(O,S)、ZnS、(Zn,Mg)O等无镉缓冲层材料替代CdS缓冲层进行缓冲层结构优化;(3) 利用双层或三层Mo背电极来解决Mo表面缺陷问题;(4) 在氧化锌中掺杂其他元素(如用铝、氯或硼代替锌的阳离子掺杂)来提高导电性,进而优化窗口层。进而分析了CIGS太阳能电池的光电转化机制和影响因素,以及基于理论优化工艺技术路线方法。最后,讨论了CIGS薄膜太阳能电池相关技术的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁苏莹
吴子华
谢华清
王元元
栾福园
余思琦
关键词:  CIGS  碱掺杂  缓冲层  Mo  窗口层    
Abstract: Copper indium gallium selenium (CIGS) solar cells have the advantages of high conversion efficiency, low production cost, no decay and little pollution. It is a promising new type of thin film solar cells. Its photoelectric conversion efficiency has reached 23.35% in the laboratory. It is of great significance to explore the photoelectric conversion mechanism and device performance improvement methods of CIGS to promote the development of photovoltaic industry. This paper comprehensively analyzes the development process, principle, structure and main technical ways to improve the performance of CIGS. (1) The development of post deposition technologies for various alkali metals, such as NaF-PDT, KF-PDT, RbF-PDT and Cs-PDT is mainly introduced; (2) the application of Zn (O, S), ZnS, (Zn, Mg)O in order to optimize the structure of the buffer layer, Cd free buffer layer materials were used to replace CdS buffer layer; (3) double or three layer Mo back electrode was used to solve the problem of Mo surface defects; (4) doping other elements (such as aluminum, chlorine or boron instead of zinc cation doping) to improve the conductivity of ZnO, and then optimize the window layer. Then, the photoelectric conversion mechanism and influencing factors of CIGS solar cells are analyzed, and the process route method based on theory optimization is proposed. Finally, the development trend of CIGS thin film solar cell technology is discussed.
Key words:  CIGS    alkali doping    buffer layer    Mo    window layer
                    发布日期:  2021-12-09
ZTFLH:  TM914.4+2  
基金资助: 国家自然科学基金重大项目(51590902); 上海市人才发展资金资助计划(2018039)
通讯作者:  wuzihua@sspu.edu.cn   
作者简介:  丁苏莹,上海第二工业大学环境工程专业硕士研究生,在吴子华教授的指导下进行研究。目前主要研究领域为新能源材料。
吴子华,上海第二工业大学教授,硕士研究生导师,博士毕业于中科院上海硅酸盐研究所材料物理与化学专业。主要研究方向为新能源材料和器件设计与制备。主持国家自然科学基金青年基金、面上项目、上海市曙光计划、上海市教委创新基金等项目多项。在Applied Physics Letter,Journal of Applied Physics等国内外期刊发表SCI论文50余篇,申请发明专利20余项,其中授权发明专利12项,授权实用新型2项。
引用本文:    
丁苏莹, 吴子华, 谢华清, 王元元, 栾福园, 余思琦. 铜铟镓硒太阳能电池性能提升方法[J]. 材料导报, 2021, 35(z2): 1-7.
DING Suying, WU Zihua, XIE Huaqing, WANG Yuanyuan, LUAN Fuyuan, YU Siqi. Methods to Improve Performance of Copper Indium Gallium Selenium Solar Cells. Materials Reports, 2021, 35(z2): 1-7.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/Iz2/1
1 Hosenuzzaman M, Rahim N A, Selvaraj J, et al. Renewable and Sustai-nable Energy Reviews, 2015, 41,284.
2 Parida B, Iniyan S, Goic R. Renewable & Sustainable Energy Reviews, 2011, 15(3),1625.
3 Saga T. NPG Asia Mater, 2010, 2(3),96.
4 First Solar Press Release. Nasdaq, First Solar Press, 2016.
5 Wu J L, Hirai Y, Kato T, et al. In, Proceedings of the 7th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 2018.
6 Ramanujam J, Singh U P. Energy & Environmental Science, 2017, 10(6),1306.
7 Ghorbani E, Kiss J, Mirhosseini H, et al. The Journal of Physical Che-mistry C, 2015, 119,25197.
8 蒋文波. 西华大学学报(自然科学版), 2015, 34(3),61.
9 Kazmerski L L, White F R, Morgan G K. Applied Physics Letters, 1976, 29(4),268.
10 Mickelsen R A, Chen W S. In:15th Photovoltaic Specialists Conference, 1981.
11 Mickelsen R A, Chen W S. Applied Physics Letters, 2008, 36(5),371.
12 Mitchell K, Eberspacher C, Ermer J, et al. IEEE Photovoltaic Specialists Conference, 2002.
13 Contreras M A, Gabor A M, Tennant A L, et al. Progress in Photovoltaics Research & Applications, 2010, 2(4),287.
14 Jackson P, Hariskos D, Lotter E, et al. Progress in Photovoltaics Research & Applications, 2011, 19(7),894.
15 Chirila A, Reinhard P, Pianezzi F, et al. Nature materials, 2013, 12(12),1107.
16 Jackson P, Hariskos D, Wuerz R, et al. Physica Status Solidi (RRL)-Rapid Research Letters, 2015, 9(1),28.
17 Tai K F, Kamada R, Yagioka T, et al. Japanese Journal of Applied Phy-sics, 2017, 56(8S2),08MC03.
18 Jackson P, Wuerz R, Hariskos D, et al. Phyica Status Solidi RRL, 2016, 10(8),575.
19 Solar Frontier. Tokyo:Solar Frontier, 2019[2019-04-10]. http,//www.solar- frontier.com/eng/news/2019/0117_press.html.
20 Colombara D, Conley K, Malitckaya M, et al. Journal of Materials Che-mistry A, 2020, 8, 6471.
21 Sun Y, Lin S P, Li W, et al. Engineering, 2017, 3(4),452.
22 Laemmle A, Wuerz R, Schwarz T, et al. Journal of Applied Physics, 2014, 115(15),154501.
23 Feurer T, Fu F, Weiss T P, et al. Thin Solid Films, 2019, 670,34.
24 Sadono, Adiyudha, Hino, et al. Solar Energy Materials & Solar Cells An International Journal Devoted to Photovoltaic Photothermal & Photochemical Solar Energy Conversion, 2018, 184,67.
25 Maticiuc N, Kodalle T, Lauche J, et al. Thin Solid Films, 2018, 665(1),143.
26 Malitckaya M, Komsa H P, Havu V, et al. The Journal of Physical Che-mistry, C. Nanomaterials and Interfaces, 2017, 121(29),15516.
27 Moradi M, Teimouri R, Saadat M, et al. Optik-International Journal for Light and Electron Optics, 2017, 136,222.
28 Kamada R, Yagioka T, Adachi S, et al. In: IEEE 43rd Photovoltaic Specialists Conference (PVSC), 2016.
29 Tobbeche S, Kalache S, Elbar M, et al. Optical and Quantum Electro-nics, 2019, 51(284),2.
30 Hamri Y Z, Bourezig Y, Medles M, et al. Solar Energy, 2019, 178,150.
31 李仲, 黄赛濠, 洪瑞江. 中山大学学报(自然科学版), 2017, 56(3),78.
32 Sara B, Baya Z, Zineb B. Materials Science-Poland, 2018, 36(3),514.
33 吴文文. Zn 基缓冲层材料的制备及其在 CIGS太阳电池中的应用.硕士学位论文, 南京航空航天大学, 2018.
34 Chantana J, Kato T, Sugimoto H, et al. Acs Applied Materials & Interfaces, 2018, 10(13),11361.
35 Wu H M, Liang S C, Lin Y L, et al. Vacuum, 2012, 86(12),1916.
36 Zhu H, Dong Z, Pan L, et al. Solid-State Electronics, 2019, 157,48.
37 Badgujar A C, Dhage S R, Joshi S V, et al. Thin Solid Films, 2015, 589,79.
38 Yoon J H, Kim W M, Park J K, et al. Progress in Photovoltaics Research & Applications, 2014, 22(1),69.
39 宋斌斌, 于涛, 张传升, 等. 太阳能学报, 2019, 40(5),1299.
40 黄云翔.铜铟镓硒薄膜太阳电池关键制备工艺分析及性能测试. 硕士学位论文,华南理工大学, 2017.
41 Chantana J, Kawano Y, Nishimura T, et al. Solar Energy, 2019, 184,553.
42 Yim K, Lee J, Lee D, et al. Sentific Reports, 2017, 7(1),40907.
43 Faye S, Steinhauser J, Oliveira N, et al. Thin Solid Films, 2007, 515(24),8558.
44 Kemell M, Dartigues F, Ritala M, et al. Thin Solid Films, 2003, 434(1/2),20.
45 Ma Q B, Ye Z Z, HE H P, et al. Journal of Crystal Growth, 2007, 304(1),64.
46 Ao J, Fu R, Jeng M J, et al. Materials, 2018, 953,2.
47 张传军, 褚君浩. 中国电机工程学报, 2019, 39(9),2524.
48 Chen J Y, Shen H L, Zhai Z H, et al. Applied Surface Science, 2020, 512, 145729.
49 阎森飚, 徐键. 材料导报, 2020, 34(7),7045.
50 Shen H, Duong T, Peng J, et al. Energy&Environmental Science, 2018, 11(2),394.
[1] 吴彦霞, 梁海龙, 陈鑫, 陈琛, 王献忠, 戴长友, 胡利明, 陈玉峰. 元素(Ce、Co、La、Sn)掺杂对V-Mo/TiO2催化剂脱硝活性的影响[J]. 材料导报, 2021, 35(6): 6020-6027.
[2] 周川, 杨博, 杨光, 杨德瑞, 杨小兵. 防毒面具用Zr-MOFs吸附材料研究进展[J]. 材料导报, 2021, 35(5): 5140-5146.
[3] 白庆伟, 麻永林, 邢淑清, 于文霞, 陈重毅. 可控电磁能(CEME)时效处理下Al-Zn-Mg-Cu合金的析出及强化机理研究[J]. 材料导报, 2021, 35(20): 20143-20148.
[4] 孙有美, 赵全成, 李茜, 王玲, 佘祖新, 王长朋. FN04Mo在七种典型大气环境下的力学性能变化规律及腐蚀机理[J]. 材料导报, 2021, 35(18): 18182-18189.
[5] 陈帅, 陶凤和, 贾长治, 孙河洋. 选区激光熔化成型4Cr5MoSiV1钢的组织与性能优化[J]. 材料导报, 2021, 35(16): 16126-16132.
[6] 张度宝, 李成涛, 方可伟, 罗坤杰, 王力, 武焕春, 薛飞. 回火温度对42CrMo4高强钢力学性能及应力腐蚀敏感性的影响[J]. 材料导报, 2021, 35(16): 16133-16137.
[7] 乌李瑛, 柏荣旭, 瞿敏妮, 付学成, 田苗, 马玲, 王英, 程秀兰. NH3和N2混合等离子体预处理对锗MOS器件性能的影响[J]. 材料导报, 2021, 35(14): 14012-14016.
[8] 刘俊男, 宋述鹏, 胡冬冬, 周和荣, 吴润. 单层WxMo1-xS2合金电子和光学性质的第一性原理研究[J]. 材料导报, 2021, 35(14): 14040-14044.
[9] 胥晓强, 胥永刚. V元素对Fe-16Cr-2.5Mo合金磁机械阻尼的影响[J]. 材料导报, 2021, 35(14): 14115-14119.
[10] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[11] 郭才胜, 吴隽, 牛犇, 熊芬, 祝柏林, 黄成斌, 刘静. 英寸级少层MoS2薄膜的低温可控制备[J]. 材料导报, 2021, 35(12): 12039-12043.
[12] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[13] 李炎铮, 云晓雪, 赖承班, 何昌林, 闵永安. 添加1%Mo提高针阀体用钢18Cr2Ni2的强韧性[J]. 材料导报, 2021, 35(12): 12130-12135.
[14] 樊梦琪, 王昊, 侯宇轩, 王惠维, 杨红健, 程庆彦, 罗学如. 磷酸二氢钠与硬脂酸钠复合改性发泡硫氧镁水泥[J]. 材料导报, 2021, 35(10): 10048-10054.
[15] 肖虎, 黄峰, 彭志贤, 戈方宇, 刘静. Ti-Mg-Al复合脱氧X70级抗酸海底管线钢氢捕获效率及HIC敏感性[J]. 材料导报, 2021, 35(10): 10158-10165.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed