Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 578-585    
  高分子与聚合物基复合材料 |
聚膦腈微纳米材料的制备及应用
解琳, 何文涛, 高京
黄冈师范学院化学化工学院,黄冈 438000
Preparation and Application of Polypolyphosphazene Micro/Nanomaterials
XIE Lin, HE Wentao, GAO Jing
College of Chemistry and Chemical Engineering,Huanggang Normal University, Huanggang 438000, China
下载:  全 文 ( PDF ) ( 5446KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机纳米材料由于其结构的特殊性比如平均粒径小、比表面积大、表面能高,呈现出独特的小尺寸效应、表面效应、增强效应等,因此自被发现以来在各行各业引起了广泛的关注。但是其固有的组成和结构也带来一系列问题,如大部分无机纳米材料无法降解,在溶剂或聚合物中分散困难等。在使用前通常需进行表面功能化处理,增加了其应用成本。采用聚合物微纳米材料代替无机纳米材料成为纳米材料开发的一个新思路。
聚合物微纳米材料的制备通常采用两亲性分子的自组装或者在模板表面进行聚合的模板法。自组装法所需的两亲性分子的准备通常是一项琐碎的任务,而模板法需要预制可控尺寸和形状的模板,都是多步过程,因此,在温和的条件下开发尺寸可控的聚合物纳米粒子的简便方法是一个挑战。环状聚磷腈作为一种新发展起来聚合物微纳米材料,在一定的环境条件下,可以通过快速的一步聚合和同时自组装过程容易地形成,并且立体形貌可根据组成和反应条件从零维调整到二维。与无机纳米材料相比,聚磷腈微纳米粒子由于其柔韧性,多种功能性、可调表面特性、生物相容性等,在药物控释、聚合物改性、锂离子电池、反应催化等领域获得广泛的关注。尽管如此,新型组成和结构的聚磷腈微纳米材料的开发和应用仍有待进一步加强。比如,如何通过靶向基团或环境敏感性基团的引入进一步加强药物控释的效率,如何通过其他阻燃元素或无机结构的引入提高材料的阻燃效率,聚磷腈作为阻燃助剂可否进一部扩展到环氧树脂外的其他聚合物体系,这些问题都有待进一步解决。
本文归纳了聚磷腈微纳米材料的制备及应用研究进展,分别对不同形态的聚磷腈微纳米材料的制备条件、制备原理和结构特征进行了详细介绍,以期为制备不同组成和结构的聚磷腈微纳米材料提供参考。分析了聚磷腈微纳米材料在药物控释、聚合物阻燃、锂离子电池、反应催化等领域的研究现状,并对其应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解琳
何文涛
高京
关键词:  聚磷腈  微纳米材料  制备方法  药物控释  聚合物阻燃    
Abstract: Since the emergence of inorganic nanomaterials, a considerable attention have been attained in various fields due to the unique small size effect, surface effect, enhancement effect and so on by virtue of the small size, large surface area and high surface energy. However, their inherent composition and structure also bring a series of problems. For example, most inorganic nanomaterials cannot be degraded, and it is difficult to disperse in solvents or polymers. Surface functionalization is usually required before use, which increases the production cost. It is a good idea to use polymer micro/nanomaterials instead of inorganic nanomaterials.
Polymer micro/nanomaterials are usually prepared by self-assembly of amphiphilic molecules or polymerization on the template surface. Preparation of amphiphilic molecules is required for the self-assembly method, while the template method requires prefabrication of templates with controllable size and shape, both of which include multistep process. Therefore, it is a challenge to develop a simple strategy for polymer micro/nanoparticles with controlled size under mild conditions. Cyclophosphazene polymers, as a newly developed polymer micro/nanomaterial, can be easily formed by rapid one-step polymerization and simultaneous self-assembly process under certain environmental conditions. The stereoscopic morphology can be adjusted from zero dimensional to two-dimensional according to the composition and reaction conditions. Compared with inorganic nanomaterials, polyphosphazene micro/nanoparticles have attracted more and more attention in the fields of drug controlled release, polymer modification, lithium-ion batteries, reaction catalysis and so on because of their flexibility, multiple functions, adjustable surface characteristics and biocompatibility. In spite of this, novel polyphosphazene micro/nanoparticles with different composition and morphology still need to be further developed. For example, how to further enhance the efficiency of drug controlled release through the introduction of targeted groups or environmentally sensitive groups, how to improve the flame retardant efficiency of materials by introducing other flame retardant elements or inorganic structures, and whether polyphosphazene as a flame retardant additive can be extended to other polymer systems other than epoxy resin. These problems need to be further solved.
In this review the research progress on preparation of polyphosphazene micro/nanomaterials is summarized. The preparation conditions, preparation principles and structural characteristics of different polyphosphazene micro/nanomaterials are introduced in detail, so as to provide refe-rence for the preparation of polyphosphazene micro/nanomaterials with different composition and morphology. The application situation of polyphosphazene micro/nanomaterials in the fields of drug controlled release, flameretardancy of polymers, lithium-ion battery, reaction catalysis and so on are analyzed, and the application prospect is prospected.
Key words:  polyphosphazene    micro/nanoparticles    preparation method    controlled release    flame retardancy
                    发布日期:  2021-07-16
ZTFLH:  TQ317  
基金资助: 黄冈师范学院“明珠学者计划”
通讯作者:  wentaohe@aliyun.com   
作者简介:  解琳,2020年6月毕业于黄冈师范学院,获得理学学士学位,现为湖北工业大学硕士研究生。在何文涛教授的指导下进行研究,目前主要研究领域为阻燃聚合物纳米材料。何文涛,黄冈师范学院教授。2010年12月在武汉大学高分子化学与物理专业取得博士学位,2011—2018年在国家复合改性聚合物材料工程技术研究中心从事聚合物纳米复合材料的研发工作,并于2015年被评为研究员。2018年1—6月作为访问学者于澳大利亚南昆士南大学从事阻燃聚合物纳米复合材料研究。近年来,在阻燃聚合物纳米复合材料领域发表论文20余篇,包括Progress in Materials Science、Composites Communications、Polymer Degradation and Stability和Polymers等。
引用本文:    
解琳, 何文涛, 高京. 聚膦腈微纳米材料的制备及应用[J]. 材料导报, 2021, 35(Z1): 578-585.
XIE Lin, HE Wentao, GAO Jing. Preparation and Application of Polypolyphosphazene Micro/Nanomaterials. Materials Reports, 2021, 35(Z1): 578-585.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/578
1 张宏伟,李爱元,沈培康.材料导报,2010(13),133.
2 Amin A M, Wang L, Wang J, et al. Designed Monomers and Polymers, 2009, 12(5), 357.
3 Wan C, Huang X. Materials Today Communications, 2017, 11, 38.
4 Zhu L, Zhu Y, Pan Y, et al. Macromolecular Reaction Engineering, 2007, 1, 45.
5 Liu W, Huang X, Wei H, et al. Journal of Materials Chemistry A, 2011, 21, 12964.
6 Chen K, Huang X, Wei H, et al. Materials Letters, 2013, 101, 54.
7 Fu J, Huang X, Zhu Y, et al. Macromolecular Chemistry and Physics, 2008, 209, 1845.
8 Fu J, Chen Z, Xu Q, et al. Carbon, 2011, 49(3), 1033.
9 Zhang S, Zhao X, Li B, et al. Journal of Hazardous Materials, 2016, 314, 95.
10 Wang Y, Mu J, Li L, et al. High Performance Polymers, 2012, 24 (3), 229.
11 Örüm S M, Demircioɡˇlu Y S. Journal of Macromolecular Science, Part A, 2019, 56 (9), 854.
12 Köhler J, Kühl S, Keul H, et al. Journal of Polymer Science Part A: Po-lymer Chemistry, 2014, 52, 527.
13 Zhu L, Xu Y, Yuan W, et al. Advanced Materials, 2006, 18, 2997.
14 张冲,耿晓维,高香迪,等.无机材料学报, 2019, 34(7), 761.
15 Li K Y, Stöver H. Journal of Polymer Science Part A-polymer Chemistry, 1993, 31, 3257.
16 Dar S U, Ali S, Hameed M U, et al. New Journal of Chemistry,2016, 40(10), 8418.
17 Ali S, Zuhra Z, Butler I S, et al. Chemical Engineering Journal, 2017, 315, 448.
18 Zhu Y, Huang X, Li W, et al. Materials Letters, 2008, 62, 1389.
19 Fu J, Wang M, Zhang C, et al. Materials Letters, 2012, 81, 215.
20 Feng Z, Fan G, Wang H, et al. Macromolular Rapid Communnication,2009, 30, 448.
21 Fu J, Huang X, Zhu L, et al. Scripta Materialia, 2008, 58, 1047.
22 Fu J, Huang X, Zhu Y, et al. Applied Surface Science,2009, 255, 5088.
23 Wang X, Wang M, Fu J, et al. Journal of Nanoparticle Research,2013, 15, 1853.
24 Huang X, Wei W, Zhao X, et al. Chemical Communications,2010, 46, 8848.
25 Chen K, Wan C, Wei W, et al. Materials Letters, 2015, 139, 93.
26 Hu Y, Meng L, Niu L, et al. Acs Applied Material Interfaces,2013, 5, 4586.
27 Hu Y, Meng L, Niu L, et al. Langmuir,2013, 29, 9156.
28 Zhang J, Qiu L, Li X, et al. Small 2007, 3 (12), 2081.
29 陈争艳, 颜红侠, 刘天野, 刘超.高分子材料科学与工程, 2015, 31(10), 185.
30 Chen K, Huang X, Tang X, et al. Journal of Macromolecular Science, Part B: Physics, 2012, 51, 269.
31 赵师师, 贺梦, 宋文尧, 张冲, 徐建中, 马海云.高等学校化学学报, 2017, 38(12), 2337.
32 Zhang Z, Han Z, Pan Y T, et al. Chemical Engineering Journal, 2020, 395, 125076.
33 Qiu S, Wang X, Yu B, et al. Journals of Hazardous Materials, 2017, 325, 327.
34 Malkappa K, Ray S S. ACS Omega,2019, 4, 9615.
35 Qiu S, Hu Y, Shi Y, et al. Composites Part A: Applied Science and Manufacturing,2018, 114, 407.
36 Zhou X, Qiu S, Xing W, et al. Acs Applied Materials Interfaces, 2017, 9(34), 29147.
37 Zhang J, Huang X, Wei H, et al. Journal of Solid State Electrochemistry,2012, 16, 101.
38 Gao P, Fu J, Yang J, et al. Physical Chemistry Chemical Physics,2009, 11, 11101.
39 We W, Lu R, Ye W, et al. Langmuir, 2016, 32, 1707.
[1] 刘润泽, 周芬, 王青春, 郜建全, 包金小, 宋希文. 固体氧化物燃料电池用CeO2基电解质的研究进展[J]. 材料导报, 2021, 35(Z1): 29-32.
[2] 王浩, 宗楠, 陈中正, 薄勇, 彭钦军. 富勒烯制备与提纯方法研究进展[J]. 材料导报, 2021, 35(Z1): 71-77.
[3] 马力, 赵赫, 昝宇宁, 肖伯律, 王东, 王全兆, 王文广. 耐热铝合金及其复合材料的制备、应用和强化机制[J]. 材料导报, 2021, 35(Z1): 414-420.
[4] 申冰磊, 王中跃, 于春雷, 王欣, 王世凯, 胡丽丽, 韦玮. 稀土掺杂钇铝石榴石晶体激光光纤的研究进展[J]. 材料导报, 2021, 35(9): 9123-9132.
[5] 陈小明, 伏利, 苏建灏, 刘伟, 李育洛, 毛鹏展, 张磊, 惠希东. AlON陶瓷的研究现状与发展趋势[J]. 材料导报, 2020, 34(Z2): 117-122.
[6] 魏声培. 分子印迹型二氧化钛的制备方法研究进展[J]. 材料导报, 2020, 34(Z1): 22-25.
[7] 杨振楠, 刘芳, 李朝龙, 郑超, 曾有福, 郑鑫, 罗梅, 史浩飞. 核壳结构电磁波吸收材料研究进展[J]. 材料导报, 2020, 34(7): 7061-7070.
[8] 黄思睿, 伍昊, 朱和国. 共晶高熵合金的研究进展[J]. 材料导报, 2020, 34(17): 17077-17081.
[9] 张小艳, 孙元, 李慧, 陈振斌. 智能印迹聚合物研究进展及发展瓶颈[J]. 材料导报, 2020, 34(15): 15163-15173.
[10] 孔令宇, 黄慧娟, 杨喜, 马建锋, 尚莉莉, 刘杏娥. 生物质基炭气凝胶复合材料在超级电容器中应用的研究进展[J]. 材料导报, 2019, 33(Z2): 32-37.
[11] 刘兰燕,宋俊,程博闻,薛文池,郑云波. 木质素基碳纤维制备的研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 405-411.
[12] 黄文欣, 李军, 徐云鹤. 二氧化锰基超级电容器的研究进展[J]. 材料导报, 2018, 32(15): 2555-2564.
[13] 曹凤, 张文彦, 张思思, 燕阳天, 杨瑞锋. 多孔金属材料的化学制备方法及性能研究进展*[J]. 《材料导报》期刊社, 2017, 31(21): 139-145.
[14] 张研, 刘康恺, 孟龙月. 荧光碳量子点的制备及其在生物医用领域的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 126-132.
[15] 高 鑫, 岳红彦, 郭二军, 姚龙辉, 林轩宇, 王 宝. 三维石墨烯复合材料的制备及其在超级电容器领域的研究现状[J]. 材料导报, 2017, 31(1): 25-29.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed