Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 342-346    
  金属与金属基复合材料 |
电火花沉积高熵合金涂层的研究现状与展望
田浩亮1, 张晓敏2, 金国2, 朴钟宇3, 王长亮1, 郭孟秋1, 杜修忻1, 王天颖1, 张昂1, 肖晨兵1
1 中国航发北京航空材料研究院航空材料先进腐蚀与防护航空科技重点实验室,北京 100095
2 哈尔滨工程大学表界面科学与技术研究所,哈尔滨 150001
3 浙江工业大学机械工程学院,杭州 310014
Research Status and Prospect of High Entropy Alloy Coating Prepared by Electrospark Deposition
TIAN Haoliang1, ZHANG Xiaomin2, JIN Guo2, PIAO Zhongyu3, WANG Changliang1, GUO Mengqiu1, DU Xiuxin1, WANG Tianying1, ZHANG Ang1, XIAO Chenbing1
1 Aviation Key Laboratory of Science and Technology on Advanced Corrosion and Protection for Aviation Material, AECC Beijing Institute of Aeronautical
Materials, Beijing 100095, China
2 Institute of Surface Science and Technology, Harbin Engineering University, Harbin 150001, China
3 School of Mechanical Engineering, Zhejiang University of technology, Hangzhou 310014, China
下载:  全 文 ( PDF ) ( 4357KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于高熵效应的多主元合金克服了传统高熵合金(HEA)的弊端,形成了综合性能优异的简单固溶体。最初,高熵合金的设计理念主要通过块状高熵合金来实现,随着人们对高熵合金的深入研究,高性能高熵合金涂层的概念被提出来。但是,现有的磁控溅射、热喷涂和激光熔覆技术制备高熵合金涂层存在厚度低、孔隙率高、对异形关键部件涂层可达性差等问题,严重阻碍了高熵合金涂层在航空航天领域的应用。电火花沉积技术不但具有绿色、节能、省材等优势,而且针对细长管内壁和弯曲弧面等结构特征的关键件,电火花沉积高熵合金涂层的厚度均匀、可达性良好。除了对涂层制备工艺的探索外,众多学者还通过高熵合金涂层设计的五大效应之一“鸡尾酒效应”改变组元进行调配以及添加WC等硬质颗粒和稀土元素来达到涂层所需的组织和性能。最后,研究者往往会在涂层制备之前采用正交试验等手段优化高熵合金涂层制备的工艺参数,提高涂层所需要的性能。本文详细介绍了高熵合金设计原理及不同技术制备高熵合金涂层的研究进展,总结了不同高熵合金涂层体系结构与性能之间的关系,并指出利用电火花沉积高熵合金涂层作为表面改性手段的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
田浩亮
张晓敏
金国
朴钟宇
王长亮
郭孟秋
杜修忻
王天颖
张昂
肖晨兵
关键词:  高熵合金  电火花沉积  高熵合金涂层    
Abstract: The multi-principal component alloy based on high entropy effect overcomes the disadvantages of traditional high entropy alloy and forms a simple solid solution with excellent comprehensive properties. At first, the design concept of high entropy alloy is mainly realized through the block high entropy alloy. With the in-depth research of high entropy alloy, the concept of high performance high entropy alloy coating is put forward. However, the existing techniques of magnetron sputtering, thermal spraying and laser cladding to prepare high entropy alloy coatings have many problems, such as low thickness, high porosity and poor accessibility to special-shaped key parts, which seriously hinder the application of high entropy alloy coatings in aerospace field. EDM deposition technology not only has the advantages of green, energy saving and material sa-ving, but also has the advantages of uniform thickness and good accessibility for the key parts of the structure characteristics such as the inner wall of long and thin pipe and curved cambered surface. In addition to the exploration of coating preparation process, many scholars also through the high entropy alloy coating design one of the five effects of the “cocktail effect” to change the composition of mixing, and the addition of WC and other hard particles and rare earth elements to achieve the required structure and properties of the coating. Finally, researchers often optimize the process parameters of high entropy alloy coating preparation by means of orthogonal test before coating preparation, so as to improve the performance required by the coating. In this paper, the design principle of high entropy alloy and the research progress of preparing high entropy alloy coatings by different technologies are introduced in detail, the relationship between the structure and properties of different high entropy alloy coa-tings is summarized, and the development prospect of electrospark deposition of high entropy alloy coatings as surface modification means is pointed out.
Key words:  high entropy alloy    electrospark deposition    high entropy alloy coating
                    发布日期:  2021-07-16
ZTFLH:  TG174.4  
基金资助: 国家自然科学基金(52075508);北京市科技新星培养计划项目(Z191100001119040);国家科技重大专项(2017-Ⅶ-0012-0109)
通讯作者:  haoliangtian@163.com   
作者简介:  田浩亮,中国航发北京航空材料研究院高级工程师,入选2019年度北京市科技新星培养计划,2020年度第九批“北京市优秀青年人才”。2010年9月至2014年7月,在北京航空航天大学获得材料学专业工学博士学位,毕业后入职北京航空材料研究院至今。以第一作者在国内外学术期刊上发表论文40余篇,授权国家发明专利17项。担任多个学术期刊的审稿人。研究方向为航空航天动力关键部件表面防护涂层材料、制备工艺研究及工程化应用。主持包括国家自然科学基金(面上、青年)项目、国家“两机专项”基础研究项目、装发、军委科技委基础预研项目等14项。
引用本文:    
田浩亮, 张晓敏, 金国, 朴钟宇, 王长亮, 郭孟秋, 杜修忻, 王天颖, 张昂, 肖晨兵. 电火花沉积高熵合金涂层的研究现状与展望[J]. 材料导报, 2021, 35(Z1): 342-346.
TIAN Haoliang, ZHANG Xiaomin, JIN Guo, PIAO Zhongyu, WANG Changliang, GUO Mengqiu, DU Xiuxin, WANG Tianying, ZHANG Ang, XIAO Chenbing. Research Status and Prospect of High Entropy Alloy Coating Prepared by Electrospark Deposition. Materials Reports, 2021, 35(Z1): 342-346.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/342
1 赵钦,马国政,王海斗,等.材料导报:综述篇,2017,31(4),65.
2 Chen T K, Shun T T, Yeh J W, et al.Surface & Coatings Technology, 2004, 188,193.
3 郑必举,蒋业华,胡文,等.功能材料,2016,47(6),6167.
4 Qiu Xingwu.Metals and Materials International, 2020, 26,998.
5 刘亮.激光熔覆AlFeCrNiTiCux系和Al0.5FeCrCoNiTix系高熵合金涂层. 硕士学位论文,山东科技大学,2017.
6 蔡召兵. NiCo(CrTiV,FeAlCu)系高熵合金及涂层的制备与性能研究. 博士学位论文,哈尔滨工程大学,2018.
7 王晓鹏,孔凡涛.航空材料学报,2019,39(6),1.
8 Yeh J W,Chen S K,Lin S J, et al. Advanced Engineering Materials,2004,6(5).
9 夏松钦. AlCoCrFeNi系高熵合金抗辐照和抗氧化行为研究. 博士学位论文,北京科技大学,2018.
10 郭伟,梁秀兵,陈永雄,等.2011年全国青年摩擦学与表面工程学术会议论文集. 中国机械工程学会, 北京,2011, pp.240.
11 An Z, Jia H, WU Y, et al.Materials Research Letters, 2015, 3(4), 1.
12 Ji X L, Duan H, Zhang H, et al.Tribology Transactions, 2015, 58(6), 1119.
13 Zhang H, Wu W, He Y, et al.Applied Surface Science,2015,363(6), 543.
14 Ye Q,Feng K,Li Z, et al.Applied Surface Science, 2017, 396, 1420.
15 金浩,张莹莹,时卓,等.材料导报:综述篇,2016,30(2),54.
16 Dolique V, Thomann A L, Brault P, et al. Materials Chemistry and Phy-sics,2009,117(1),142.
17 张坚,邱斌,赵龙志.热加工工艺,2011,40(18),116.
18 Jiang Li, Wu Wei, Cao Zhiqiang,et al.Journal of Thermal Spray Techno-logy,2016,25(4),806.
19 李行志. 等离子喷涂涂层的工艺、组织与性能研究. 硕士学位论文, 武汉科技大学,2004.
20 Huang P K,Yeh J W,Shun T T,et al.Advanced Engineering Materials,2004,6(1-2),74.
21 吴刚刚. TC4表面激光熔覆AlCoCrFeNiTix高熵合金涂层组织与性能研究. 硕士学位论文,武汉理工大学,2019.
22 张留伟,邵俊.装备制造技术,2017(8),76.
23 李占明,朱有利,孙晓峰,等.热加工工艺,2013,42(24),32.
24 冯玉龙. 电火花数控化沉积FeConNiCuCrx高熵合金涂层的微观结构及耐蚀性研究.博士学位论文,兰州交通大学,2016.
25 王慧琳,郭亚雄,蓝宏伟,等.表面技术,2019,48(6),130.
26 Ang A S M,Berndt C C,Sesso M L,et al. Metallurgical and Materials Transactions A,2015,46(2),791.
27 Li Q H,Yue Z N,Guo X L.Metallurgical and Materials Transactions A, 2013, 44A,1767.
28 郭策安,赵宗科,赵爽,等.材料导报:综述篇,2019,33(5),1462.
29 王彦芳,闫晗,李娟,等.表面技术,2019,48(6),144.
30 Li Xiaofeng, Feng Yinghao, Liu Bin, et al.Journal of Alloys and Compounds,2019, 788, 485.
31 冯英豪,李晓峰,刘斌,等.热加工工艺,2019,48(8),160.
32 黄祖凤,张冲,唐群华,等.中国表面工程,2013,26(1),13.
33 安亚君,芦晶晶,曹皓崴.材料保护,2020,53(3),101.
34 王小荣. 高能微弧火花数控沉积Ti-Co-Cu-Fe-Ni-Cr高熵合金涂层研究. 博士学位论文, 哈尔滨工业大学,2017.
35 贾春堂,沙明红,李胜利,等.腐蚀科学与防护技术,2019,31(3),3438.
36 孙凯伟,张琪娜,涂益民,等.焊接技术,2014,43(8),1.
37 郭娜娜,高绪杰,王亮,等.特种铸造及有色合金,2019,39(10),1072.
[1] 张猛, 花福安, 赵巍. 基于机器学习的高熵合金生成相预测研究[J]. 材料导报, 2021, 35(Z1): 331-335.
[2] 梅金娜, 薛飞, 吴天栋, 卫娜, 蔡振. FeCrNiMn高熵合金本构方程的建立[J]. 材料导报, 2021, 35(Z1): 336-341.
[3] 夏铭, 孙博, 王鑫, 梁秀兵, 沈宝龙. 高熵合金增材制造研究现状与展望[J]. 材料导报, 2021, 35(13): 13119-13127.
[4] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[5] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[6] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[7] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[8] 李萌, 杨成博, 张静, 郑开宏. 轻质高熵合金的研究现状[J]. 材料导报, 2020, 34(21): 21125-21134.
[9] 季承维, 马爱斌, 江静华. 轻质高熵合金的研究现状与发展趋势[J]. 材料导报, 2020, 34(19): 19094-19100.
[10] 贾岳飞, 王刚, 贾延东, 伍诗伟, 穆永坤, 徐龙, 张靓博, 徐立明. 轻质高熵合金研究现状[J]. 材料导报, 2020, 34(17): 17003-17017.
[11] 靳柯, 卢晨阳, 豆艳坤, 贺新福, 杨文. 高熵合金辐照损伤的实验研究进展[J]. 材料导报, 2020, 34(17): 17018-17030.
[12] 徐彪, 付上朝, 赵仕俊, 贺新福. 高熵合金辐照性能的计算机模拟进展[J]. 材料导报, 2020, 34(17): 17031-17040.
[13] 陈刚, 罗涛, 沈书成, 陶韬, 唐啸天, 薛伟, 夏义. 基于铝热反应FeCrNiCuAlSn0.5高熵合金涂层的制备[J]. 材料导报, 2020, 34(17): 17047-17051.
[14] 魏仕勇, 彭文屹, 赵文超, 康依凡, 陈斌, 鲍蓉蓉, 邓晓华. 等离子熔覆CoCrFeMnNi高熵合金涂层参数优化及组织与性能研究[J]. 材料导报, 2020, 34(17): 17052-17057.
[15] 王雪姣, 乔珺威, 吴玉程. 高熵合金:面向聚变堆抗辐照损伤的新型候选材料[J]. 材料导报, 2020, 34(17): 17058-17066.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed