Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 302-305    
  无机非金属及其复合材料 |
高Prandtl数双层流体的热毛细对流数值模拟
莫东鸣
重庆工业职业技术学院机械工程与自动化学院,重庆 401120
Numerical Simulation of Thermocapillary Convection of High Prandtl Number Fluid in Two-layer System
MO Dongming
Department of Mechanical Engineering and Automation, Chongqing Industry Polytechnic College, Chongqing 401120, China
下载:  全 文 ( PDF ) ( 3487KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 不相溶混的双层流体系统的传热传质现象广泛地存在于自然界和工程技术领域中,尤其是芯片工业与微电子工业中半导体材料的液封提拉法生长制备工艺中,双层流体的流动稳定性直接影响着晶体材料的生长质量。微重力条件下,由于没有了重力的影响,可以增强双层流体流动的稳定性以获得更为优异的晶体生长环境,然而,两相界面处的热毛细力引起的热毛细对流却对双层流体系统中的传热传质现象影响甚大。目前,可采用实验研究的方法对水平温度梯度作用下的双层流体的热毛细对流进行可视化研究,以观测流动特性及失稳的耗散结构。在空间实验中,由于低Prandtl数流体不可透视的特性,故在实验中鲜少采用其作为观察工质,多采用高Prandtl数流体。关于双层流体的热毛细对流,前人的研究主要集中在矩形腔体内环形池内的低Prandtl数双层流体的流动特性,对环形液池中高Prandtl数双层流体的流动特性及失稳耗散结构的研究还鲜见报道。
本工作针对微重力条件下,水平温度梯度作用下的环形液池内B2O3/蓝宝石熔体、5cSt硅油/HT-70、水/FC-75三组工质对的热毛细对流特性进行了研究,采用数值模拟的方法获得了R-Z截面的流函数、温度分布,以及监测点的速度和温度周期波动,揭示了流动失稳后的振荡流型。 研究结果表明,运动粘度会影响流动流型,对于运动粘度较低的5cSt硅油/HT-70、水/FC-75的工质对,流动失稳为热毛细对流失稳, 而高运动粘度的B2O3/蓝宝石熔体则出现了热毛细对流失稳与Marangoni失稳。对比三种工质对的流动失稳临界Marangoni数,发现上下液层Prandtl数比值越大,则临界Marangoni数越大,选择较大的上下液层Prandtl数比值,可增强环形双液层流体流动稳定性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫东鸣
关键词:  高Prandtl数流体  双液层  热毛细对流  数值模拟  流动稳定性    
Abstract: The phenomenon of heat and mass transfer in immiscible two-layer fluid system widely exists in nature and engineering technology. Especially in the liquid sealed Czochralski growth process of semiconductor materials in chip industry and microelectronics industry, the flow stability of double-layer fluid directly affects the growth quality of crystal materials. In microgravity, the stability of the two-layer fluid flow can be enhanced to obtain a better crystal growth environment without the influence of gravity. However, the thermocapillary convection caused by the thermocapillary force at the two-phase interface has a great influence on the heat and mass transfer in the two-layer fluid system. At present, experimental me-thods can be used to visualize the thermocapillary convection of two-layer fluid under horizontal temperature gradient to observe the flow characteristics and unstable dissipation structure. In space experiments, due to the non perspective property of low Prandtl number fluid, it is seldom used as the observation working fluid, but high Prandtl number fluid is used. As for the thermocapillary convection of two-layer fluid, previous stu-dies mainly focused on the flow characteristics of low Prandtl number two-layer fluid in an annular pool in a rectangular cavity, while the study on the flow characteristics and unstable dissipation structure of high Prandtl number two-layer fluid in an annular pool is rarely reported.
In this paper, the thermocapillary convection characteristics of B2O3/sapphire melt, 5cSt silicone oil/HT-70 and water/FC-75 working pairs in an annular liquid pool under microgravity and horizontal temperature gradient were studied. The flow function and temperature distribution of R-Z section, as well as the periodic fluctuation of velocity and temperature at monitoring points were obtained by numerical simulation. The oscillating flow pattern after flow instability was revealed. The results show that the kinematic viscosity can affect the flow pattern. For the working pair of 5cSt silicone oil/HT-70 and water/FC-75 with low kinematic viscosity, the flow instability is thermocapillary convection instability, while for the B2O3/sapphire melt with high kinematic viscosity, thermocapillary convection instability and Marangoni instability appear. By comparing the critical Marangoni number of the three working pairs, it is found that the larger the Prandtl number ratio of the upper and lower liquid layers is, the larger the critical Marangoni number is.
Key words:  high Prandtl number fluid    two-layer system    thermocapillary convection    numerical simulation    flow stability
                    发布日期:  2021-07-16
ZTFLH:  O647  
基金资助: 重庆市基础研究与前沿探索专项项目(cstc2018jcyjAX0597);重庆市教委科学技术研究项目(KJQN201803201);重庆市高校创新研究群体项目:晶体生长及其制备
通讯作者:  modongming@126.com   
作者简介:  莫东鸣,2012年6月毕业于重庆大学动力工程学院,获得工学博士学位。2014年获重庆市青年骨干教师称号。2016年7月至2019年7月在重庆大学机械工程博士后流动站进行博士后工作。现任重庆工业职业技术学院机械工程系副教授。主要研究领域是热毛细流动的稳定性分析。以第一作者在国内外学术期刊上发表论文20余篇,出版专著1本,获得实用新型专利7项。主持包括重庆市自然科学基金、市教委科学技术研究项目等省部级项目5项,参研国家自然科学基金面上项目2项、重庆市高校创新研究项目等。
引用本文:    
莫东鸣. 高Prandtl数双层流体的热毛细对流数值模拟[J]. 材料导报, 2021, 35(Z1): 302-305.
MO Dongming. Numerical Simulation of Thermocapillary Convection of High Prandtl Number Fluid in Two-layer System. Materials Reports, 2021, 35(Z1): 302-305.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/302
1 姚连增. 晶体生长基础,中国科学技术大学出版社,1995.
2 刘秋生,Bernard Roux, 胡文瑞.力学进展,1997,27(4),518.
3 Li Y R, Zhang W J, Peng L. Journal of Superconductivity and Novel Magnetism, 2010, 23, 1219.
4 Li Y R, Zhang W J, Wu S Y, et al. International Journal of Heat and Mass Transfer, 2009,52, 4769.
5 Li Y R, Zhang W J, Wu S Y. Science China Technological Sciences, 2010,53(6), 1655.
6 Simanovskii I, Nepomnyshchy A, Viviani A, et al. Microgravity Science and Technology, 2016, 28(4),381.
7 Simanovskii I, Viviani A, Dubois F. International Journal of Thermal Sciences, 2017,113, 51.
8 Simanovskii I, Viviani A, Dubois F, et al. Microgravity Science and Technology, 2018,30,243.
9 Demina S E, Bystrova E N, Postolov V S, et al. Journal of Crystal Growth, 2008,310, 1443.
10 Mo D M, Li Y R, Shi S W. Microgravity Science and Technology, 2011,23 (S1), 43.
11 Mo D M, Ruan D F. Journal of Mechanical Science and Technology, 2018, 32 (7), 3437.
12 Mo D M, Ruan D F. Microgravity Science and Technology, 2019, 31(3),293.
[1] 汪海波, 于海群, 童水光, 唐宁, 徐永亮. 引晶直径对扩肩形态影响的数值模拟及实验研究[J]. 材料导报, 2021, 35(Z1): 186-188.
[2] 薛河, 刘吉, 张顺, 张建龙, 孙裕满, 毕跃起. 基于UMAT焊接接头力学性能连续变化的表征方法及应用[J]. 材料导报, 2021, 35(Z1): 362-366.
[3] 张铃, 杨钦如, 余梦, 黄锐明, 程其进. CuSCN作为石墨烯/硅异质结太阳能电池无机界面层的数值模拟[J]. 材料导报, 2021, 35(4): 4001-4006.
[4] 陈克选, 王向余, 李宜炤, 陈彦强, 杜茵茵. 水冷条件下WAAM温度场的数值模拟研究[J]. 材料导报, 2021, 35(4): 4165-4169.
[5] 刘志勇, 夏溪芝, 陈威威, 张云升, 刘诚. 水泥基材料微结构演变及其传输性能的数值模拟[J]. 材料导报, 2021, 35(3): 3076-3084.
[6] 尹华伟, 胡传波, 姚鑫, 陈琪雅, 胡雷, 卢增辉. 二维平移法小尺寸KDP单晶生长溶液流动与传质模拟[J]. 材料导报, 2021, 35(12): 12032-12038.
[7] 朱康杰, 钱春香, 李敏, 苏依林. 微生物自修复混凝土中微胶囊修复剂尺寸及掺量对修复剂释放率的影响[J]. 材料导报, 2020, 34(Z2): 212-216.
[8] 刘轶伦. 高速铁路Cu-Cr-Zr合金承导线对连续挤压工艺的适应性[J]. 材料导报, 2020, 34(8): 8131-8135.
[9] 徐国财, 黎军顽, 左鹏鹏, 吴晓春. 热-机械载荷下H13钢力学响应行为实验和数值分析[J]. 材料导报, 2020, 34(8): 8159-8164.
[10] 周蕊, 刘众旺, 张建国, 刘兵飞, 杜春志. 基于DPC-CZM混合模型的金属粉末压坯裂纹三维数值模拟[J]. 材料导报, 2020, 34(6): 6151-6155.
[11] 何秋霖, 石少卿, 崔廉明, 孙建虎, 陈自鹏. 轻质材料构筑的蜂窝防护结构抗爆性能试验与数值模拟研究[J]. 材料导报, 2020, 34(24): 24023-24028.
[12] 赵颖, 裴久杨, 郭丽丽, 运新兵, 马怀超, 李冰. 宽厚比对双杆连续挤压6063铝合金焊合质量的影响[J]. 材料导报, 2020, 34(24): 24114-24120.
[13] 朱军, 李姝, 王斌, 张驰, 李冬, 康敏. 钒氮合金制备过程温度场模拟[J]. 材料导报, 2020, 34(22): 22100-22104.
[14] 张淞凯, 袁鸿. 山棕纤维/天然乳胶复合材料床垫的横观各向同性参数研究[J]. 材料导报, 2020, 34(22): 22154-22161.
[15] 刘杭, 李明伟, 王鹏飞, 胡志涛, 尹华伟. 二维圆周平动法ADP单晶生长流动与传质数值模拟[J]. 材料导报, 2020, 34(20): 20022-20027.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed