Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 306-310    
  金属与金属基复合材料 |
TiFe基储氢材料性能的研究进展
任万青, 徐掌印, 尹贻光, 祁震
内蒙古科技大学材料与冶金学院,包头 014010
Research Progress in Improving the Performance of TiFe-based Hydrogen Storage Materials
REN Wanqing, XU Zhangyin, YIN Yiguang, QI Zhen
School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China
下载:  全 文 ( PDF ) ( 3280KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 TiFe基储氢材料凭借其吸氢量大、放氢环境要求低、原材料丰富等优点,引起了越来越多研究者的关注。然而活化困难和滞后性问题仍是限制其大规模发展运用的主要瓶颈。针对这些问题,国内外学者做出很多研究。本文首先介绍了发展TiFe基储氢合金的必要性,纯TiFe合金的结构和储氢机理以及存在的问题;然后综述了近些年国内外对其研究的进展,并针对TiFe基储氢合金存在的问题,系统地归纳了解决方法,即调整合金元素相对含量,改善加工工艺等;重点从元素引进的角度归纳总结了改善TiFe基储氢合金的方法。最后,对未来的TiFe基储氢材料的发展方向及趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
任万青
徐掌印
尹贻光
祁震
关键词:  储氢材料  TiFe合金  改善方法  活化性能    
Abstract: TiFe-based hydrogen storage materials have attracted more and more attention because of their advantages of large hydrogen absorption, low hydrogen release environment requirements, and abundant raw materials. However, activation difficulties and lagging problems are still the main bottlenecks restricting its large-scale development and application. In response to these problems, researchers at home and abroad have done a lot of research. This article summarizes the research progress in recent years at home and abroad, introduces the necessity of developing TiFe-based hydrogen storage alloys, the structure and hydrogen storage mechanism and existing problems of pure TiFe alloys. Solution of the problem: Adjust the relative content of alloy elements and improve the processing technology. Besides, for the first time, the method of improving TiFe-based hydrogen storage alloy was summarized from the perspective of element introduction. It provides theoretical guidance for the large-scale and extensive application of TiFe-based hydrogen storage materials in the future.
Key words:  hydrogen storage materials    TiFe alloy    improvement method    activation performance
                    发布日期:  2021-07-16
ZTFLH:  TG146.4  
通讯作者:  xuzhyin1234@aliyun.com   
作者简介:  任万青,内蒙古科技大学硕士研究生,硕士期间主要研究方向是TiC-TiB2金属陶瓷复合材料。研究生期间,2019.09—2020.06参与“稀土微合金钢中的作用机理研究”课题研究(国家自然基金);2020.04参与内蒙古自治区自然科学基金“基于直接合金化共生矿铌或钒短流程回收利用的基础研究”项目申请;2020.06至今从事原位合成TiC-TiB2金属陶瓷材料抗氟盐腐蚀的研究。徐掌印,内蒙古科技大学副教授,博士。主要从事钢铁冶炼、高温耐磨材料、高韧性铸铁材料开发与工艺、材料加工等教学和科研工作。主持了国家自然科学基金、内蒙古自然科学基金及企业产学研等科研项目并获得多项科研成果。
引用本文:    
任万青, 徐掌印, 尹贻光, 祁震. TiFe基储氢材料性能的研究进展[J]. 材料导报, 2021, 35(Z1): 306-310.
REN Wanqing, XU Zhangyin, YIN Yiguang, QI Zhen. Research Progress in Improving the Performance of TiFe-based Hydrogen Storage Materials. Materials Reports, 2021, 35(Z1): 306-310.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/306
1 Endo N, Shimoda E, Goshome K, et al.International Journal of Hydrogen Energy, 2020, 45(1), 207.
2 Abe J O, Popoola A P I, Ajenifuja E, et al.International Journal of Hydrogen Energy, 2019, 44, 15072.
3 Shimbayashi T, Fujita K.Tetrahedron,2020, 76(11), 130946.
4 Guo Liejin. International Journal of Hydrogen Energy, 2019,44(30),15703.
5 Silva R A, Leal Neto R M, Leiva D R, et al. International Journal of Hydrogen Energy, 2018, 43(27),12251.
6 Schefer J, Fischer P, Hälg W, et al. Materials Research Bulletin, 1979, 10(14), 1281.
7 Sujan G K, Wu B, Pan Z, et al. Metallurgical and Materials Transactions A,DOI: 10.1007/s11661-019-05555-9.
8 Latroche M.Journal of Physics and Chemistry of Solids, 2004, 65, 517.
9 Sujan G K, Pan Z, Li H, et al. Critical Reviews in Solid State and Materials Sciences,2020,45(5),410.
10 Sandrock G D, Reilly J J, Johnson J R.In: Stateline Nevada Proceeding of the 11th Intersociety Energy Conversion and Engineering Conference 1976. Google Schoolar,1976,pp. 965.
11 Zeaiter A, Nardin P, Pour Yazdi M A, et al.Materials Research Bulletin, 2018, 112, 132.
12 Shang Hongwei, Zhang Yanghuan, Li Yaqin, et al. Renewable Energy,2019, 135,1481.
13 Lee S M, Perng T P.Journal of Alloys and Compounds,1999, 291(1), 254.
14 Qu Haiqin, Du Junlin, Pu Chaohui, et al. International Journal of Hydrogen Energy, 2015,40(6),2729.
15 Abe M, Kuji T.Journal of Alloys and Compounds, 2006,446, 200.
16 Abrashev B, Spassov T, Bliznakov S, et al.International Journal of Hydrogen Energy, 2010, 35(12), 6332.
17 Khajavi S, Rajabi M, Huot J.Journal of Alloys and Compounds, 2019, 775, 912.
18 Elena A Berdonosova A, Klyamkin S N, Zadorozhnyy V Y, et al.Journal of Alloys and Compounds, 2016, 688, 1181.
19 Xu Y, Sun Y, Dai X, et al. Journal of Materials Research and Technology, 2019, 8(3), 2486.
20 Hosni B, Fenineche N, Elkedim O, et al. Journal of Solid State Electrochemistry,2018, 22(1), 17.
21 Manna J, Tougas B, Huot J. International Journal of Hydrogen Energy, 2018, 43(45), 20795.
22 Aguey-Zinsou K, Ares-Fernandez J.Energy & Environmental Science, 2019,3(5), 526.
23 Jankowska E, Makowiecka M, Jurczyk M. Journal of Alloys & Compounds, 2005, 404, 691.
24 Abe M, Kuji T.Journal of Alloys and Compounds, 2006, 446, 206.
25 Vega L E R, Leiva D R, Leal Neto R M, et al.International Journal of Hydrogen Energy, 2020, 45(3), 2084.
26 Falcão R B, Dammann E D C C, Rocha C J, et al. Materials Science Forum, 2010, 2048, 329.
27 Emami H, Edalati K, Matsud J, et al.Acta Materialia,2015, 88, 190.
28 Falcao R B, Dammann E D C C, Rocha C J, et al.International Journal of Hydrogen Energy, 2018, 43, 16107.
29 Massicot B.Paris Est, 2009,40(37),247.
30 Lv P, Liu Z, Dixit V.International Journal of Hydrogen Energy, 2019, 44(51), 27843.
31 Manna J, Tougas B, Huot J. International Journal of Hydrogen Energy, 2020, 45(20), 11625.
32 Kumar S, Tiwari G P, Sonak S, et al.Energy, 2014,75,520.
33 Ali W, Li M, Gao P, et al. International Journal of Hydrogen Energy, 2016, 42(4), 2229.
34 Singh B K, Cho S, Yoon H, et al.Materials Chemistry and Physics, 2008, 112(2), 686.
35 Park J, Jang H, Han S, et al.Journal of Alloys and Compounds, 2001, 325(1), 293.
36 Patel A K, Tougasc B, Sharmab P, et al.Journal of Materials Research and Technology, 2019, 8(6), 5623.
37 Han H, Kim H, et al.Applied Surface Science, 2020, 517, 146163.
38 Patel A K, Duguay A, Tougas B, et al.International Journal of Hydrogen Energy, 2020, 45(1), 787.
39 Ma J, Pan H, Wang X, et al.International Journal of Hydrogen Energy, 2000, 25, 779.
40 Lv P, Huot J.Energy,2017, 138, 375.
41 Tai Y, Wang P, Xia C, et al.International Journal of Hydrogen Energy, 2020, 45, I207.
42 Poojan Modi, Kondo-Francois Aguey-Zinsou. International Journal of Hydrogen Energy, 2019,44(31),16757.
43 Lee S M, Perng T P.International Journal of Hydrogen Energy, 1994, 19(3), 259.
44 Zadorozhnyy V Y, Klyamkin S N, Zadorozhnyy M Y, et al.Journal of Alloys and Compounds,2014, 586, S56.
45 Li Y, Shang H, Zhang Y, et al.International Journal of Hydrogen Energy, 2019, 44(8), 4240.
46 Berdonosova E A, Zadorozhnyy V Y, Zadorozhnyy M Y, et al.Internatio-nal Journal of Hydrog Enenergy, 2019, 44(55), 29159.
47 Wang X, Chen R, Chen C, et al.Journal of Alloys and Compounds, 2006, 425(1), 291.
48 Liu B, Fan G, Wang Y, et al.Rare Metals, 2007, 7, 5801.
49 Leng H, Yu Z, Yin J, et al. International Journal of Hydrogen Energy,2017, 42(37), 23731.
50 Yang Tai, Wang Peng, Xia Chaoqun, et al.International Journal of Hydrogen Energy, 2020, 45(21), 12071.
51 Knight E W, Gillespie A K, Prosniewski M J, et al.International Journal of Hydrogen Energy, 2020,45(35),20178.
[1] 侯锁霞, 任呈祥, 吴超, 赵江昆, 张舵, 张好强. 激光熔覆层裂纹的产生和抑制方法[J]. 材料导报, 2021, 35(Z1): 352-356.
[2] 陈健, 顾晨宇, 杨宁, 邱天, 徐杰, 陈翔宇, 朱帅, 焦齐统, 潘炜, 刘晶晶. LaNi5.5Sn1.5-C-Si合金优异的长期吸/放氢循环性能[J]. 材料导报, 2021, 35(4): 4112-4117.
[3] 周超, 王辉, 欧阳柳章, 朱敏. 高压复合储氢罐用储氢材料的研究进展[J]. 材料导报, 2019, 33(1): 117-126.
[4] 王 斌,张乐乐,杜金晶,张 博,梁李斯,朱 军. 电热还原法制备V-Ti-Cr-Fe储氢合金[J]. 《材料导报》期刊社, 2018, 32(10): 1635-1638.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed