Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 121-127    
  无机非金属及其复合材料 |
金属有机骨架材料合成方法对氮氧化物吸附性能的影响
崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良
郑州大学材料科学与工程学院,河南省高温功能材料重点实验室,郑州 450052
Influence of Metal Organic Framework Materials Synthesis Method on the Adsorption Performance of Nitrogen Oxides
CUI Xinghui, WU Xiaopeng, QI Wenhao, XING Yiqiang, PAN Mengbo, DU Haoran, MA Chengliang
Henan Key Laboratory of High Temperature Functional Ceramics,School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450052, China
下载:  全 文 ( PDF ) ( 4132KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架材料(Metal-organic frameworks,MOFs)因具有高的比表面积和孔隙率,使得其拥有良好的气体吸附性能。与传统的NOx吸附材料相比,MOFs材料拥有超高的比表面积和孔隙率,结构丰富多样且具有周期性,良好的热稳定性和化学稳定性。国内外学者采用不同的合成方法合成MOFs材料,以达到对NOx高效吸附的目的。
MOFs材料的合成方法主要有水热法、溶剂热法、超声波合成法和微波合成法。水热法操作步骤简单,合成的晶体质量高,但是晶粒较大,孔体积小;溶剂热法和水热法原理相同,通过加入不同官能团的有机溶剂,合成的材料结构更为丰富,比表面积和孔容更大,对NOx的吸附效果比水热法好,也是使用最广泛的方法;超声波合成法合成的MOFs材料粒径较小且尺寸均一,比表面积和孔容较大,对NOx的吸附效果好,但是成本较高;微波合成法可加快反应速率,形成更小的晶粒,比表面积和孔容较大,对NOx的吸附量很高,但是同样也具有经济成本高的劣势。
为此,本文对MOFs材料的合成方法、改性技术进行了总结,同时分析了不同方法合成的MOFs对氮氧化吸附效果的影响,并对MOFs材料吸附氮氧化物的发展趋势作了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔杏辉
吴晓鹏
戚文豪
邢益强
潘孟博
杜浩然
马成良
关键词:  金属有机骨架材料  氮氧化物  干法吸附剂  合成方法    
Abstract: Metal organic framework materials have good gas adsorption performance due to their high specific surface area and porosity. Compared with traditional NOx adsorption materials, MOFs have ultra-high specific surface area and porosity, rich and diverse structures and periodicity, and good thermal and chemical stability. The synthesis methods of MOFs have been studied a lot to get a high adsorption efficiency of NOx.
The synthesis methods of MOFs mainly include hydrothermal method, solvothermal method, ultrasonic synthesis method and microwave synthesis method. The hydrothermal method has an easy operation and high crystal quality but a large crystal grains and small pore volume; The principles of the solvothermal method and the hydrothermal method are same. By adding organic solvents with different functional groups, the synthesized material can have a richer structure, larger specific surface area, and a better adsorption property on NOx than hydrothermal method. So it is also the most widely used method; the MOFs synthesized by ultrasonic synthesis method has small particle and uniform size,large specific surface area and pore volume, and good NOx adsorption property but high cost; the microwave synthesis method can accelerate the reaction process to get a smaller particle size, specific surface area and pore volume, and a high adsorption capacity for NOx, but it also has the disadvantage of high economic cost.
Therefore, we summarize the synthesis methods and modification technologies of MOFs in this article, and analyze the effects of MOFs synthesized by different methods on the adsorption of NOx, and then prospecte the development trend of MOFs for adsorbing NOx.
Key words:  metal organic framework materials    nitrogen oxides    dry adsorbent    synthesis method
                    发布日期:  2021-07-16
ZTFLH:  TB383  
基金资助: 国家自然科学基金(51872265); “十三五”国家重点研发计(2017YFB0310701)
通讯作者:  machengliang@zzu.edu.cn   
作者简介:  崔杏辉,2018年毕业于洛阳理工学院,获得工学学士学位。现为郑州大学材料科学与工程学院硕士研究生,在马成良教授的指导下进行研究。目前主要研究高温窑炉氮氧化物减排技术。马成良,郑州大学教授,博士研究生导师,郑州大学高温材料研究所所长,河南省高温功能材料重点实验室主任。2006年获郑州大学材料加工专业博士(导师钟香崇院士),2000年11月至今,在郑州大学材料学院/郑州大学高温功能材料研究所工作。2018年12月至2019年12月,美国维克森林大学国家公派访问学者。在国内外学术期刊上发表论文50余篇,出版专著4部,10项成果鉴定为国际先进,授权国家专利10余项,主持3项国家自然科学基金面上项目。研究方向主要为高效节能隔热材料、洁净钢冶炼用钢包新型耐火材料、非氧化物复合材料。曾荣获首届钟香崇青年科技奖、全国建材行业技术革新奖、国家级新产品奖、河南省科技进步2等奖、河南省教育厅科技成果1等奖,2018年评为“智汇郑州”第一批地方突出贡献人才。论文曾获河南省第十届自然科学优秀论文一等奖、河南省教育厅优秀论文一等奖。独立或协助钟香崇院士指导硕士、博士研究生数十人。
引用本文:    
崔杏辉, 吴晓鹏, 戚文豪, 邢益强, 潘孟博, 杜浩然, 马成良. 金属有机骨架材料合成方法对氮氧化物吸附性能的影响[J]. 材料导报, 2021, 35(Z1): 121-127.
CUI Xinghui, WU Xiaopeng, QI Wenhao, XING Yiqiang, PAN Mengbo, DU Haoran, MA Chengliang. Influence of Metal Organic Framework Materials Synthesis Method on the Adsorption Performance of Nitrogen Oxides. Materials Reports, 2021, 35(Z1): 121-127.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/121
1 王宗雄, 储荣邦. 表面工程资讯, 2011, 11(2), 3.
2 Matito-Martos I, Rahbari A, Martin-Calvo A, et al. Phyical Chemistry Chemical Physics, 2018, 20(6), 4189.
3 马现奇, 高旭东, 范永斌, 等. 中国水泥, 2019(5), 78.
4 Zengel D, Koch P, Torkashvand B, et al. Angewandte Chemie International Edition, 2020, 132(34), 11423.
5 Ye B, Kim J, Lee M J, et al. Microporous and Mesoporous Materials, 2021, 310, 110588.
6 Klose W, Rincon S. Fuel, 2007, 86(1-2), 203.
7 Perdana I, Creaser D, Hrman O, et al. Journal of Catalysis, 2005, 234(1), 219.
8 李娟娟. 吸附脱除低浓度一氧化氮的研究. 硕士学位论文, 大连理工大学, 2017.
9 Li H L, Eddaoudi M, O'Keeffe M, et al. Academic Journal, 1999, 402(6759), 4.
10 郭大为, 李倩, 陈西岩, 等.石油炼制与化工, 2012, 42(2), 9.
11 Xu Q, Fang L, Fu Y, et al. Materials Letters, 2020, 264, 127402.
12 Zhao X, Wang Y, Li D S, et al. Advanced Materials, 2018, 30(37), 1705189.1.
13 Kim K C. Journal of Organometallic Chemistry, 2018, 854, 94.
14 Chavan S, Vitillo J G, Gianolio D, et al. Physical Chemistry Chemical Physics, 2012, 14(5), 1614.
15 王丽苹, 赵粒成, 兰开顺, 等. 化学通报, 2017, 80(7) , 14.
16 Glomb S, Woschko D, Makhloufi G, et al. Acs Applied Materials & Interfaces, 2017, 9(42), 37419.
17 Petit C, Levasseur B, Mendoza B, et al. Microporous and Mesoporous Materials, 2012, 154, 107.
18 Yu J. Computational evaluation of metal-organic frameworks for CO2 capture. Ph.D.Thesis, Texas A&M University, USA, 2013.
19 Tan K, Zuluaga S, Gong Q, et al. Chemistry of Materials, 2015, 27(6), 2203.
20 Levasseur B, Petit C, Bandosz T J. ACS Applied Materials and Interfaces, 2010, 2(12), 3606.
21 Breedon M, Spencer M J S, Miura N. The Journal of Physical Chemistry C, 2013, 117(24), 12472.
22 Breedon M, Spencer M J S, Miura N. Chemical Physics Letters, 2014, 593, 61.
23 Liu Z S. Waste Management, 2008, 28(11), 2329.
24 Khan A H, Peikert K, Fröba M, et al. Microporous and Mesoporous Materials, 2015, 216, 111.
25 Meek S T, Greathouse J A, Allendorf M D. Advanced Materials, 2011, 23(2), 249.
26 Zheng N, Masel R I. Journal of the American Chemical Society, 2006, 128(38), 12394.
27 Seo Y K, Hundal G, Jang I T, et al. Microporous and Mesoporous Mate-rials, 2009, 119(1), 331.
28 Vaitsis C, Sourkouni G, Argirusis C. Ultrasonics sonochemistry, 2019, 52, 106.
29 Klimakow M, Klobes P, Thu Nemann A F, et al. Chemistry of Materials, 2010, 22(18), 5216.
30 乔萌, 牛建瑞, 钟为章, 等. 河北工业科技, 2018, 167(1), 74.
31 Chui S S Y, Lo S M F, Charmant J P H, et al. Science, 1999, 283(5405), 1148.
32 Yang S H, Sun J L, Ramirez-Cuesta A J, et al. Green Chemistry, 2012, 4(11), 887.
33 Ibarra I A, Bayliss P A, Pérez E, et al. Green Chemistry, 2012, 14(1), 117.
34 Han X, Godfrey H G W, Briggs L, et al. Nature Materials, 2018, 17(8), 691.
35 Nijem N, Bluhm H, Ng M L, et al. Chemical Communications Royal Society of Chemistry, 2014, 50(70), 10144.
36 Petit C, Bandosz T J. Dalton Transactions, 2012, 41(14), 4027.
37 Sava Gallis D F, Vogel D J, Vincent G A, et al. ACS Applied Materials and Interfaces, 2019, 11(46), 43270.
38 Gupta A, Kang S B, Harold M P. Catal. Today, 2021, 360, 411.
39 Bello E, Margarit V J, Gallego E M, et al. Microporous and Mesoporous Materials, 2020, 302, 110222.
40 Han X, Hong Y, Ma Y, et al. Journal of the American Chemical Society, 2020, 142(36), 15235.
41 Lu Z, Godfrey H G W, Da Silva I, et al. Nature Communications, 2017, 8, 14212.
42 Kyriakidou E A, Lee J, Choi J S, et al. Catal. Today, 2020, 360.
43 Li J, Han X, Zhang X, et al. Nature Chemistry, 2019, 11(12), 1085.
44 Xiang L, Blake A J, Wilson C, et al. Journal of the American Chemical Society, 2006, 128(33), 10745.
45 聂明, 陆顺, 李庆, 等.中国科学:化学, 2016, 46(4), 357.
46 Cavka J H, Jakobsen S R, Olsbye U, et al. Journal of the American Chemical Society, 2008, 130(42), 13850.
47 Ebrahim A M, Levasseur B, Bandosz T J. Langmuir, 2012, 29(1), 168.
48 Ebrahim A M, Bandosz T J. Microporous & Mesoporous Materials, 2014, 188, 149.
49 Wang Y, Ercan C, Khawajah A, et al. Aiche Journal, 2012, 58(3), 782.
50 Li B, Wen H-M, Wang H, et al. Energy & Environmental Science, 2015, 8(8), 2504.
51 Ebrahim A M, Bandosz T J. ACS Applied Materials and Interfaces, 2013, 5(21), 10565.
52 陈驰, 庞军, 韩爽, 等. 物理化学学报, 2012, 28(1), 189.
53 Wang L, Wang L, Zhao J, et al. Journal of Applied Physics, 2012, 111(11) , 112628.
54 Chae H K, Siberio-Pérez D Y, Kim J, et al. Nature, 2004, 427(6974), 523.
55 Caskey S R, Wong-Foy A G, Matzger A J. Journal of the American Che-mical Society, 2008, 130(33), 10870.
56 Tan K, Zuluaga S, Wang H, et al. Chemistry Materials, 2017, 29(10), 4227.
57 王玮, 吴云, 迟博伟. 化工设计通讯, 2016, 42(9), 32.
58 Bo X, Wheatley P S, Zhao X, et al. Journal of the American Chemical Society, 2007, 129(5), 1203.
59 侯吉聪.山东化工, 2019, 48(10), 81.
60 Petit C, Burress J, Bandosz T J. Carbon, 2011, 49(2), 563.
61 Seredych M, Bandosz T J. Journal of Physical Chemistry C, 2007, 111(43), 15596.
62 Decoste J B, Demasky T J, Katz M J, et al. New Journal of Chemistry, 2015, 39(4), 2396.
63 Katz M J, Brown Z J, Colon Y J, et al. Chemical Communications, 2013, 49(82), 9449.
64 张林建, 李芳芹, 任建兴, 等. 上海电力学院学报, 2019, 35(3), 267.
65 Thomas-Hillman I, Stevens L A, Lange M, et al. Green Chemistry, 2019, 21(18), 5039.
66 Peterson G W, Mahle J J, DeCoste J B, et al. Angewandte Chemie, 2016, 128 (21) , 6343.
[1] 王小霞, 王勇, 张娟. 含磷低聚倍半硅氧烷及其阻燃应用的研究进展[J]. 材料导报, 2021, 35(Z1): 552-559.
[2] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[3] 徐卫卫, 董梦悦, 赵静, 张鸣清, 底兰波, 张秀玲. Zr基MOFs在大气压等离子体中稳定性的研究[J]. 材料导报, 2020, 34(16): 16104-16108.
[4] 徐群娜, 仇瑞杰, 马建中. 聚合物基MOFs复合材料的制备及应用[J]. 材料导报, 2020, 34(15): 15153-15162.
[5] 初红涛, 姚冬, 陈嘉琪, 于淼. 金属有机骨架材料作为荧光探针的研究进展[J]. 材料导报, 2020, 34(13): 13114-13120.
[6] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[7] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[8] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[9] 董鸿,孙晓君,张欣,杨豆豆,王雪亮,张凤鸣. 纳米金属有机骨架ZIF-90的制备及载药性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 189-192.
[10] 卞洁鹏,杨庆浩. 离子液体的合成与纯化方法研究进展[J]. 《材料导报》期刊社, 2018, 32(11): 1813-1819.
[11] 周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英. 金属有机骨架材料在气体吸附与分离中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 112-121.
[12] 张永祥, 廖建国, 李艳群, 路善行, 段星泽. 纳米羟基磷灰石/壳聚糖复合生物材料研究*[J]. 《材料导报》期刊社, 2017, 31(17): 53-60.
[13] 王丽苹. 金属有机骨架材料在光催化反应中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(13): 51-62.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed