Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 1-8    
  无机非金属及其复合材料 |
纳米碳化钛的制备及在储能领域的应用研究进展
郝娴1,2, 梁峰2, 李红霞1, 曹云波2, 王晓函2, 张海军2
1 中钢集团洛阳耐火材料研究院有限公司,先进耐火材料国家重点实验室,洛阳 471000
2 武汉科技大学,省部共建耐火材料与冶金国家重点实验室,武汉 430081
Preparation Method of Titanium Carbide Nanomaterials and Its Application Research Progress in Energy Storage Field
HAO Xian1,2, LIANG Feng2, LI Hongxia1, CAO Yunbo2, WANG Xiaohan2, ZHANG Haijun2
1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co., Ltd., Luoyang 471000,China
2 The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
下载:  全 文 ( PDF ) ( 8625KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着社会经济的快速发展,能源需求日益膨胀,传统能源利用问题逐渐凸显,更加高效和环保的能源转换和存储技术越来越受到推崇。能源转换和存储装置的关键在于电极材料的合理选择和结构设计。碳化钛(TiC)因其独特的电子结构、良好的化学稳定性和较高的导电性,作为一种能源存储和转换新材料引起人们的极大关注,并逐渐在锂离子电池、锂硫电池、超级电容器等领域受到研究者的青睐。纳米TiC的显微结构、粒径大小和纯度直接影响电池的电化学性能,因此纳米TiC的有效制备是实现其在储能领域产业化应用的关键。为此,本文综述了纳米TiC材料现有的制备方法及最新研究进展,阐述了各种工艺方法过程及合成机理,探讨了不同方法之间的差别及应用范围,总结了纳米TiC材料在储能领域的应用现状,并展望了未来纳米TiC的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郝娴
梁峰
李红霞
曹云波
王晓函
张海军
关键词:  纳米碳化钛  超级电容器  锂硫电池  锂离子电池    
Abstract: The consumption of fossil fuels, which include coal, oil and natural gas, has accelerated dramatically due to the worldwide economic expansion. The development of green, renewable and highly efficient methods of energy conversion and storage technologies is in high demand. All the materials used in the technologies hold the key to fundamental advances in energy conversion and storage. Therefore, high-performance materials should have specific properties and be rationally designed for applications in the crucial fields of energy conversion and storage. Titanium carbide (TiC) have attracted great attention as a new generation of energy storage materials duo to its unique electronic structure, good chemical stability and high conductivity, which is widely used in lithium ion batteries, lithium sulfur batteries, and supercapacitors. The electrochemistry performance of TiC nanomaterials depends on the microstructure, particle size, and purity. Therefore, the effective preparation of TiC nanomaterials is the key to its industrial application in the field of energy storage. In this paper, the recent preparation methods and latest research progress of TiC nanomaterials are reviewed, the synthesis process and mechanism of various methods are summarized, and the advantage and disadvantage are discussed. The application status of TiC nanomaterials in the field of energy storage is epitomized, and the future development direction of TiC nanomaterials is proposed.
Key words:  TiC nanomaterials    supercapacitor    lithium-sulfur battery    lithium ion battery
                    发布日期:  2021-07-16
ZTFLH:  TQ174.75  
基金资助: 国家自然科学基金面上项目(51872210;51672194);湖北省自然科学基金创新群体项目(2017CFA004);湖北省教育厅高等学校优秀中青年科技创新团队计划(T201602)
通讯作者:  liangfengref@wust.edu.cn   
作者简介:  郝娴,2019年6月毕业于西安科技大学,获得工学学士学位。目前,为中钢集团洛阳耐火材料研究院硕士研究生,在李红霞教授的指导下进行研究。目前主要研究领域为界面电场下水口壁面电化学侵蚀。梁峰,武汉科技大学副教授。2013年博士毕业于武汉科技大学,2018年入选湖北省“楚天学子”人才项目。目前主要研究方向为光催化与储能纳米功能材料、非氧化物的绿色合成、多孔功能结构陶瓷、高性能耐火材料。近五年发表相关学术论文50余篇,其中以第一/通讯作者发表SCI收录论文20余篇,多篇论文刊登在高水平材料学杂志包括Appl. Catal B: Environ. Carbon,Sci. Rep.,CrystEngComm等上, 授权国家发明专利10余项。
引用本文:    
郝娴, 梁峰, 李红霞, 曹云波, 王晓函, 张海军. 纳米碳化钛的制备及在储能领域的应用研究进展[J]. 材料导报, 2021, 35(Z1): 1-8.
HAO Xian, LIANG Feng, LI Hongxia, CAO Yunbo, WANG Xiaohan, ZHANG Haijun. Preparation Method of Titanium Carbide Nanomaterials and Its Application Research Progress in Energy Storage Field. Materials Reports, 2021, 35(Z1): 1-8.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/1
1 Zhang Z Y, Liu M L, Tian X, et al. Nano Energy, 2018, 50(8), 182.
2 Vallauri D, At'Ias A, Chrysanthou A. Journal of the European Ceramic Society, 2008, 28(8), 1697.
3 Mohapatra S, Mishra D K, Singh S K. Powder Technology, 2013, 237(3), 41.
4 刘俊杰. 纳米碳化钛复合材料的构建及储能性能. 硕士学位论文, 浙江工业大学, 2017.
5 Shin H H, Eun J H. Journal of Nanomaterials, 2015, 16(1), 1.
6 Xia X H, Zhang Y Q, Chao D L, et al. Energy & Environmental Science, 2015, 8(5), 1559.
7 Wu K H, Jiang Y, Jiao S Q, et al.Journal of Solid State Chemistry, 2019, 277(9), 793.
8 Chen X, Fan J L, Lu Q.Journal of Solid State Chemistry, 2018, 262(3), 44.
9 Chen T, Li M, Song S H, et al.Nano Energy, 2020, 71(5), 104549.
10 Xia X H, Zhan J Y,Zhong Y, et al. Small, 2017, 13(5), 1602742 .
11 Lupu A, Compagnone D, Orlanducci S, et al. Electroanalysis, 2004, 16(20), 1704.
12 Song Y F, Zhu H X, Deng C G, et al. Rare Metal Materials and Enginee-ring, 2018, 47(4), 1082.
13 Pan J S, Cao R X, Yuan Y W.Materials Letters, 2006, 60(5), 626.
14 Yang L X, Wang Y, Liu R J, et al.Journal of Materials Science & Technology, 2020, 37(1), 173.
15 Jam A, Nikzad L L, Razavi M S. Ceramics International, 2017, 43(2), 2448.
16 Wang H, Zhu W C, Liu Y Cet al. Materials (Basel), 2016, 9(11), 904.
17 Nivedhita N, Nihaar N N, Pavithra B, et al. International Journal of Refractory Metals and Hard Materials, 2020, 87(2), 105165.
18 Oghenevweta J E, Wexler D, Calka A. Scripta Materialia, 2016, 122(9), 93.
19 Singh P, Singh H W, Singh B, et al.Micro & Nanometer Letters, 2016, 1724(1), 1.
20 Hassine N A, Binner J G P, Cross T E. International Journal of Refractory Metals and Hard Materials, 1995, 13(6), 353.
21 任亚琦. 钛基化合物纳米材料的制备及其电化学性能研究. 博士学位论文, 哈尔滨工业大学, 2015.
22 Mi P B, He J, Qin Y F, et al. Surface and Coatings Technology, 2017, 309(5), 15.
23 Xie X C, Ou G S, Men H Q, et al. Inorganic and Nano-Metal Chemistry, 2020, 50(5), 400.
24 Yuan X Y,Cheng L F, Kong L, et al. Journal of Alloys & Compounds, 2014, 596(5), 132.
25 Mojaki S C, Mishra S B, Mishra A K. Materials Letters, 2020, 264(1), 127317.
26 Cao C Z, Liu W Q,Javadib A, et al. Procedia Manufacturing, 2017, 10(7), 634.
27 Chen G, Yan L, Luo H M, et al.Advanced Materials, 2016, 28(35), 7580.
28 Huang H, Zhu W J, Tao X Y, et al. American Chemical Society, 2012, 4(11), 5974.
29 Xia Y, Zhang W K, Xiao Z, et al.Journal of Materials Chemistry, 2012, 22(18), 9209.
30 Xu Y H, Zhu Y J, Liu Y H, et al.Advanced Energy Materials, 2012, 3(1), 128.
31 Croy J R, Balasubramanian M, Gallagher K G, et al. American Chemical Society, 2015, 48(11), 2813.
32 Vishnu Dev.Applied Surface Science, 2018, 449(8), 537.
33 Huang H, Feng T,Gan Y P, et al. ACS Applied Materials & Interfaces, 2015, 7(22), 11842.
34 Cao S J,Xue Z, Yang C W, et al. Nano Energy, 2018, 50(8), 25.
35 袁琦,邹正光,万振东,等.材料工程,2018, 46(1), 106.
36 Wild M, O'Neill L, Zhang T, et al.Energy & Environmental Science, 2015, 8(12), 3477.
37 Yang Y, Zheng G Y, Cui Y.Chemical Society Reviews, 2013, 42(7), 3018.
38 Wu F X, Zhao E B, Gordon D, et al.Advanced Materials, 2016, 28(30), 6365.
39 Manthiram A, Chung S H, Zu C X. Advanced Materials, 2015, 27(12), 1980.
40 Xu G L, Xu Y F, Fang G C, et al.ACS Applied Materials & Interfaces, 2013, 5(21), 10782.
41 Zhang J, Xiang J Y, Dong Z M, et al.Electrochimica Acta, 2014, 116(1), 146.
42 Manthiram A, Fu Y, Su Y S. Accounts of Chemical Research, 2013, 46(5), 1125.
43 She Z W, Sun Y M, Zhang Q F, et al. Chemical Society Reviews, 2016, 45(20), 5605.
44 Zhou T H, Zhao Y, Zhou G M, et al.Nano Energy, 2017, 39(9), 291.
45 Cui Z Q, Yao J, Mei T, et al.Electrochimica Acta, 2019, 298(3), 43.
46 Huang H, Liu J J, Xia Y, et al. Journal of Alloys and Compounds, 2017, 706(6), 227.
47 Xia X H, Zhang Y Q, Chao D L, et al.Nanoscale, 2014, 6(10), 5008.
48 Michel L T, Editor G. MRS Bulletin, 1999, 24(11), 23.
49 Xia X H, Chao D L, Fan Z X, et al.Nano Letters, 2014, 14(3), 1651.
50 Xia X H,Tu J P, Zhang Y Q, et al. ACS Nano, 2012, 6(6), 5531.
51 Wang G P, Zhang L, Zhang J J. Chemical Society Reviews, 2012, 41(2), 797.
52 Yao Y,Huo K F, Hu L B, et al. ACS Nano, 2011, 5(10), 8346.
53 Ottakam Thotiyl M M, Freunberger S A, Peng Z Q, et al. Nature Mate-rials, 2013, 12(11), 1050.
54 Wang W, Liu W Y, Zeng Y X, et al.Advanced Materials, 2015, 27(23), 3572.
55 Yang P H, Xiao X, Li Y Z, et al.ACS Nano, 2013, 7(3), 2617.
56 Xia X H, Zhang Y Q, Chao D L, et al.Energy & Environmental Science, 2015, 8(5),1559.
[1] 胡国彬, 刘慧根, 覃爱苗. 纳米二氧化硅负极材料储锂性能的研究进展[J]. 材料导报, 2021, 35(Z1): 9-14.
[2] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[3] 杨婷, 胡新宇, 王文磊. 硬脂酸锌热解ZnO@C复合材料的储锂性能[J]. 材料导报, 2021, 35(8): 8007-8010.
[4] 翟鑫华, 张盼盼, 周建峰, 何亚鹏, 黄惠, 郭忠诚. 锂离子电池用富锂锰基正极材料掺杂改性研究进展[J]. 材料导报, 2021, 35(7): 7056-7062.
[5] 安海霞, 王景平, 杨立, 杨百勤, 李喜飞. 聚吡咯涂层改性的高温自阻断锂离子电池及其性能[J]. 材料导报, 2021, 35(4): 4007-4011.
[6] 玉日泉. 金属热还原法制备锂离子电池纳米硅材料的研究进展[J]. 材料导报, 2021, 35(3): 3041-3049.
[7] 李晓丹, 胡心雨, 刘小平, 刘小清, 申渝, 唐莹, 冯佳成. 苯并噁嗪树脂的研究新进展:智能化应用及能源、环境领域应用[J]. 材料导报, 2021, 35(3): 3209-3218.
[8] 魏安柯, 王磊, 王祎. 金属-有机骨架(MOFs)用于锂硫电池硫正极材料改性的研究进展[J]. 材料导报, 2021, 35(13): 13052-13057, 13066.
[9] 王鸣, 黄俊涛, 程丽丽, 周律法, 任亚航, 王学雷. 锂离子电池负极用Li4Ti5O12@C复合材料的制备及电化学性能[J]. 材料导报, 2020, 34(Z2): 19-23.
[10] 张曦元, 康建立. 柔性自支撑纳米结构电极的研究进展[J]. 材料导报, 2020, 34(Z2): 30-36.
[11] 金克霞, 江泽慧, 马建锋, 傅峰, 杨淑敏, 刘杏娥. 纤维素纳米晶基导电复合材料的应用进展[J]. 材料导报, 2020, 34(Z2): 521-524.
[12] 潘福森, 沈龙, 童磊, 聂顺军, 李虹. 喷雾造粒制备纳米硅-硬碳复合材料及其性能[J]. 材料导报, 2020, 34(Z1): 132-136.
[13] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[14] 郭锦, 李占龙, 连晋毅, 闫晓燕, 张敏刚. 改性乙炔黑对锂硫电池电化学性能的影响[J]. 材料导报, 2020, 34(8): 8020-8024.
[15] 赵立敏, 王惠亚, 解启飞, 邓秉浩, 张芳, 何丹农. 车用动力锂离子电池纳米硅/碳负极材料的制备技术与发展[J]. 材料导报, 2020, 34(7): 7026-7035.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed