Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 94-96    
  无机非金属及其复合材料 |
常压下籽晶诱导翡翠玻璃料晶化
郭志超1, 藏金浩2, 王金龙1, 刘岩1
1 新乡学院物理与电子工程学院,新乡 453003;
2 郑州大学物理工程学院,郑州 450052
Crystallization of Jadeite Glass Material Induced by Seed Crystal UnderAtmospheric Pressure
GUO Zhichao1, ZANG Jinhao2, WANG Jinlong1, LIU Yan1
1 College of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, China;
2 School of Physics and Engineering, Zhengzhou University, Zhengzhou 450052, China
下载:  全 文 ( PDF ) ( 5248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 天然翡翠可能是形成于高温、高压条件,人工合成翡翠就普遍依此展开探索,但苛刻的制备条件使得人造翡翠成本较高,产品也都未商业化。合成翡翠的困难是实现翡翠玻璃质到硬玉矿物晶体的转化,这也是研究开发低成本合成翡翠的瓶颈。鉴于此,本工作针对常压下实现翡翠玻璃质晶化的难题,利用籽晶诱导促使翡翠玻璃料晶化的方法制备样品,并对制备产物进行分析测试,样品的X衍射分析表明,合成样品结晶物为硬玉(NaAlSi2O6),又用光学显微镜、扫描电子显微镜(SEM)和透射电子显微镜(TEM)分别对样品的形貌、介观和微观结构进行了测量及分析,样品的SEM结果显示晶体表面存在片状和片体团簇的花朵状结构,TEM结果显示样品内有完整的不同取向的晶格条纹。结果显示,样品中存在微观孔洞和微裂纹,质量达不到宝石级别,但实现了常压下由翡翠玻璃料到NaAlSi2O6矿物晶体的转化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭志超
藏金浩
王金龙
刘岩
关键词:  翡翠  籽晶  玻璃质  矿物晶体  诱导晶化    
Abstract: Jadeite maybe was formed in metamorphic rocks under high pressure and relatively high temperature conditions. According to this statement, the exploration of artificial synthesis jadeite was generally carried out under this harsh preparation conditions, which make the manufacturing cost higher, and the products were not commercialized. The core issue of the synthesis jadeite was the difficulty in the transformation from vitreous substance to jadeite mineral crystals, which was also the bottleneck in the exploration and development of low-cost synthetic jadeite. Aiming at the problem of crystallization of jadeite glass, the present paper we prepared jadeite sample by seed-induced crystallization under atmospheric pressure. The XRD results of the sample showed that the crystals of the synthesized samples were jadeite (NaAlSi2O6). Utilizing optical microscopy, SEM and TEM, mesoscopic and microstructure of the sample were investigated systematically. The flake structure and micro cracks were observed on the surface of the sample by optical microscopy, the SEM results show that the lamellar crystals and flower-like structure of lamellar clusters in sample, and the TEM results show that the samples have complete lattice fringes with different orientations. Due to the existence of micro-voids and macro-cracks in the samples, the prepared samples were unsatisfactory as gemstones. However, the transformation from jadeite vitreous to NaAlSi2O6 mineral crystals were realized under atmospheric pressure.
Key words:  jadeite    seed crystal    vitreous substance    mineral crystallin    induced crystallization
                    发布日期:  2020-07-01
ZTFLH:  O78  
基金资助: 国家自然科学基金青年基金(1170050821);高等学校重点科研项目(17A140026)
作者简介:  郭志超,新乡学院,讲师。2013年7月毕业于北京工业大学,材料学博士学位。2016年结束博士后研究,于同年进入新乡学院工作至今,主要从事无机材料制备工艺的研发。在SCI/EI期刊发表文章16篇,申请发明专利15项。
引用本文:    
郭志超, 藏金浩, 王金龙, 刘岩. 常压下籽晶诱导翡翠玻璃料晶化[J]. 材料导报, 2020, 34(Z1): 94-96.
GUO Zhichao, ZANG Jinhao, WANG Jinlong, LIU Yan. Crystallization of Jadeite Glass Material Induced by Seed Crystal UnderAtmospheric Pressure. Materials Reports, 2020, 34(Z1): 94-96.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/94
1 Harlow G E, Tsujimori T, Sorensen S S. European Journal of Mineralogy,2012,24,197.
2 Abduriyim A, Saruwatari K,Katsurada Y. Gems & Gemology,2017,53,48.
3 Harlow G E,Tsujimori T, Sorensen S S. Annual Review of Earth and Planetary Sciences,2015,43,105.
4 Hiroshi M.Journal of Mineralogical and Petrological Sciences,2017,112,227.
5 Wang Y M,Nie S F. Gems & Gemology,2016,52(4),436.
6 Xing Y Y, Qi L J, He Y. Fresenius Environmental Bulletin,2018,27(9),6053.
7 Yang J, Song Y T, Zhou S.Physica B,2018,543,32.
8 郑友进,王丽娟,王方标.人工晶体学报,2016,45(12),2845.
9 Zhao L, Ma H A, Fang C. Journal of Synthetic Crystals,2018,499,30.
10 Gang L, Jian W, et al.Chinese Physics B,2017,26(6),068202.
11 Du Y C, He D W. Chinese Journal of High Pressure Physics,2016,36(6),441.
12 Wang F B,Wang L. Journal of Synthetic Crystals,2018,47(11),2043.
13 Wang F B.Modern Physics Letters B,2014,22,1450175.
14 Radvanec M, Banno S, Ernst W G. American Mineralogist,1998,83(3-4),273.
15 Cao S, Qi L, Guo Q.Spectroscopy and Spectral Analysis,2008,28(4),847.
16 Vagarali S S, et al. U.S. patent application, US6908674B2,2005.
17 Longy F. Synthese,2018,195(4),1459.
[1] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[2] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[3] 于海群. 底部保温结构对大尺寸蓝宝石晶体生长影响的数值模拟及实验研究[J]. 材料导报, 2019, 33(z1): 37-40.
[4] 张鲁龄, 魏钦华, 秦来顺, 史宏声. SrI2∶Eu∶Cs晶体生长及闪烁性能[J]. 材料导报, 2018, 32(22): 3845-3847.
[5] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[6] 李志巍, 李明伟, 胡志涛, 尹华伟. 喷流转晶法KDP晶体生长系统的流动与传质模拟[J]. CLDB, 2018, 32(8): 1362-1366.
[7] 胡志涛,李明伟,尹华伟,肖林海. 非完整形态KH2PO4晶体薄表面层生长特性[J]. 《材料导报》期刊社, 2018, 32(2): 272-277.
[8] 肖学峰, 徐家跃, 向卫东. 镥基闪烁晶体的研究进展*[J]. 《材料导报》期刊社, 2017, 31(17): 12-19.
[9] 刘旭东, 毕孝国, 孙旭东. 焰熔法生长钛酸锶单晶体生长室内温度分布的数值模拟*[J]. 《材料导报》期刊社, 2017, 31(16): 138-143.
[10] 李雨萌, 田甜, 徐家跃. 外尔半金属TaAs单晶的研究进展*[J]. 《材料导报》期刊社, 2017, 31(15): 120-125.
[11] 尹华伟, 李明伟, 曹亚超, 程旻, 宋洁. ZTS晶体(100)面生长过程的实时AFM研究*[J]. 《材料导报》期刊社, 2017, 31(12): 15-20.
[12] 周川, 李明伟, 尹华伟, 崔启栋, 胡志涛. 不同运动方式KDP单晶生长流动与物质输运数值分析*[J]. 《材料导报》期刊社, 2017, 31(2): 136-141.
[13] 赵晨,贾伟,樊腾,仝广运,李天保,翟光美,马淑芳,许并社,. 类金字塔状GaN微米结构的生长及其形貌表征[J]. 材料导报编辑部, 2017, 31(22): 21-25.
[14] 胡志涛, 李明伟, 尹华伟, 刘杭. 磷酸二氢钾晶体薄表面层生长动力学实时显微研究[J]. 材料导报, 2018, 32(18): 3116-3122.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed