Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 15-20    https://doi.org/10.11896/j.issn.1005-023X.2017.012.004
  材料研究 |
ZTS晶体(100)面生长过程的实时AFM研究*
尹华伟, 李明伟, 曹亚超, 程旻, 宋洁
重庆大学动力工程学院,低品位能源利用技术及系统教育部重点实验室, 重庆 400030
In-situ AFM Study on Growth Process of the (100) Face of ZTS Crystal
YIN Huawei, LI Mingwei, CAO Yachao, CHENG Min, SONG Jie
Key Laboratory of Low-Grade Energy Utilization Technologies and System of Ministry of Education, College of Power Engineering, Chongqing University, Chongqing 400030
下载:  全 文 ( PDF ) ( 1632KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用原子力显微镜(AFM)对不同生长条件下ZTS晶体(100)面生长过程进行实时观测发现,(100)面均呈现为台阶面,台阶分单台阶、聚并台阶和准聚并台阶3种。位错、缺陷和二维成核均可形成单台阶;聚并台阶以整体推移的方式生长,而准聚并台阶内的单台阶保持单台阶推移的特点。单台阶的推移展现出明显的各向异性。聚并台阶的聚并程度随着过饱和度增大而增大;台阶簇内台阶合并和不同生长源生成的沿不同推移方向推移的台阶相互影响引起台阶运动失稳均能导致聚并台阶的形成;聚并台阶列同步向前推移体现出生长的稳定性,随着生长进行,生长台阶各个位置的过饱和度差异会导致稳定性遭到破坏。另外发现,晶体表面存在优先成核位置,优先成核位置位于台阶边缘,且成核过程遵循成核—扩展—再次成核的规律性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹华伟
李明伟
曹亚超
程旻
宋洁
关键词:  ZTS晶体  原子力显微镜(AFM)  台阶运动  优先成核    
Abstract: In-situ atomic force microscopy (AFM) method has been applied to real-time observation over the growth process on the (100) face of ZTS crystals under different conditions. It comes out that the (100) face is manifested to be step-faceting, including the elementary steps, macrosteps and quasi-macrosteps. The elementary steps originate from dislocations, defects and two-dimensional nuclei. The macrosteps advance as a whole, but the steps which assembled in the quasi-macrosteps keep the motion characteristics of elementary steps. The advancement of elementary steps shows significant characteristics of anisotropy. The bunching le-vel of step increases obviously with a rise of supersaturation. Besides the mergence of steps among the step cluster, the formation of macrosteps also result from the instability of step motion which is caused by the interaction of steps generating from different sources and moving in different directions. The stability of growth is reflected by the synchronous advance forward of the bunching step series. However, the stability can be destroyed owing to the different supersaturation at diverse locations of the growth steps. In addition, results indicated that the sites of preferential nucleation appear on the crystal surface, and preferential nucleation occurs at the step edges and has the regularity of nucleation-spreading-re-nucleation.
Key words:  ZTS crystal    atomic force microscopy (AFM)    step motion    preferential nucleation
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TB34  
  O781  
基金资助: *国家自然科学基金(51176208;51476014)
通讯作者:  李明伟:通讯作者,男,1964年生,博士,教授,从事晶体生长及机理研究 E-mail:aoweixia@126.com   
作者简介:  尹华伟:男,1988年生,博士研究生,主要从事晶体生长实验研究 E-mail:837518667@qq.com
引用本文:    
尹华伟, 李明伟, 曹亚超, 程旻, 宋洁. ZTS晶体(100)面生长过程的实时AFM研究*[J]. 《材料导报》期刊社, 2017, 31(12): 15-20.
YIN Huawei, LI Mingwei, CAO Yachao, CHENG Min, SONG Jie. In-situ AFM Study on Growth Process of the (100) Face of ZTS Crystal. Materials Reports, 2017, 31(12): 15-20.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.004  或          http://www.mater-rep.com/CN/Y2017/V31/I12/15
1 Krupková R, Fábry J, Císarˇová I, et al. Redetermination of sulfatotris (thiourea) zinc (Ⅱ) [J]. Acta Crystallogr,2007,63(12):m3177.
2 Muthu K, Bhagavannarayana G, Meenakshisundaram S P. Growth, structure, crystalline perfection and characterization of Mg (Ⅱ)-incorporated tris (thiourea) Zn (Ⅱ) sulfate crystals: Enhanced second harmonic generation (SHG) efficiency [J].J Alloys Compd,2013,548(3):201.
3 Muthu K, Meenakshisundaram S. Enhancement of second harmonic generation efficiency: Cs (Ⅰ)-doped tris (thiourea) zinc (Ⅱ) sulphate crystals [J].J Phys Chem Solids,2012,73(9):1146.
4 Yoreo J J D, Orme C A, Land T A. Using atomic force microscopy to investigate solution crystal growth[C]//Advances in Crystal Growth Research.Amsterdam,2001:361.
5 Malkin A J, Kuznetsov Y G, Mcpherson A. In situ atomic force microscopy studies of surface morphology, growth kinetics, defect structure and dissolution in macromolecular crystallization [J].J Cryst Growth,1999,196(2-4):471.
6 Song J, Li M W, Cheng M, et al. In situ studies of the spiral growth of zinc thiourea sulphate crystals with ethylene diamine tetraacetic acid doped by atomic force microscopy [J]. Cryst Res Technol,2014,49(9):743.
7 Song J, Li M W, Cao Y C, et al. In situ atomic force microscopy studies of growth mechanisms and surface morphology of zinc thiourea sulfate crystals [J]. Cryst Res Technol,2015,50(11):828.
8 Wang Y H, Cheng M, Kang D Y, et al. Ex situ investigation of the step bunching on the (100) face of ZTS crystal by AFM[J]. J Funct Mater,2015,46(2):2070(in Chinese).
王玉宏, 程旻, 康道远,等. ZTS晶体(100)面台阶聚并现象的AFM非实时研究[J]. 功能材料,2015,46(2):2070.
9 Cao Y C, Li M W, Pan C L, et al. In situ AFM observations on the defects of ZTS crystals [J]. J Funct Mater,2014,45(23):23059(in Chinese).
曹亚超, 李明伟, 潘翠连,等. ZTS晶体缺陷的实时AFM观测[J]. 功能材料,2014,45(23):23059.
10 Cao Y C, Li M W, Cheng M, et al. An in situ AFM investigation on the morphology of the (100) growth interface of ZTS crystal [J]. J Cryst Growth,2014,388:22.
11 Shi H, Li M W, Cheng M, et al. In situ study of the kinetics of growth steps on (100) faces of zinc (Tris) thiourea sulphate crystal [J]. J Funct Mater,2011,42(12):2141(in Chinese).
石航,李明伟,程旻,等. 硫脲硫酸锌晶体(100)面台阶生长动力学实时研究[J].功能材料,2011,42(12):2141.
12 Bredikhin V I, Malshakova O A. Step bunching in crystal growth from solutions: Model of nonstationary diffusion layer, numerical simulation [J]. J Cryst Growth,2007,303(1):74.
13 Chernov A A. Modern crystallography Ⅲ (crystal growth) [M]. Berlin: Springer-Verlag,1984.
14 Berg W F. Crystal growth from solutions [J]. Proc R Soc Lond A,1938,164(916):79.
[1] 肖学峰,徐家跃,韦海成,张欢,张学锋. 硅酸铋——一种快计时重闪烁新型多功能晶体材料[J]. 材料导报, 2019, 33(15): 2505-2512.
[2] 肖治国,成岳,唐伟博,余宏伟. 核壳磁性纳米粒子在环境治理中的应用进展[J]. 材料导报, 2019, 33(13): 2174-2183.
[3] 恭飞, 吴张永, 朱启晨, 张莲芝, 郭翠霞, 王雪婷. NiFe2O4磁流体润滑性实验研究[J]. 材料导报, 2019, 33(z1): 126-131.
[4] 赵笑昆, 李博研, 张增光. 磁控溅射沉积制备Al掺杂ZnO薄膜的棒状晶粒生长[J]. 材料导报, 2019, 33(z1): 112-115.
[5] 王怡心, 马勤, 贾建刚, 高昌琦, 张瑄瑄. Half-Heusler热电材料性能优化策略及研究进展[J]. 材料导报, 2019, 33(z1): 403-407.
[6] 裴梓帆, 王雪, 唐寅涵, 段皓然, 崔升. 磁性气凝胶材料的应用研究进展[J]. 材料导报, 2019, 33(z1): 470-475.
[7] 王雪, 朱昆萌, 彭长鑫, 钟铠, 崔升. 生物可降解多糖气凝胶材料的研究进展[J]. 材料导报, 2019, 33(z1): 476-480.
[8] 苏继龙, 刘明财. 结构参数对薄膜型隔声超材料带隙移位特性的影响[J]. 材料导报, 2019, 33(8): 1298-1301.
[9] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[10] 杨帆, 马建中, 鲍艳. 纳米纤维素及其在水凝胶中的研究进展[J]. 材料导报, 2019, 33(7): 1227-1233.
[11] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[12] 李微, 韩森, 黄啟波, 姚腾飞, 徐鸥明. 细粒式薄表层沥青混合料中粗集料的骨架特性[J]. 材料导报, 2019, 33(4): 617-624.
[13] 陈娟, 江琦. 自组装技术在特殊形貌无机纳米材料制备中的作用[J]. 材料导报, 2019, 33(3): 454-461.
[14] 汪丽丽, 宋健, 梁加南, 李敏华. 手性超材料圆极化波吸收特性研究进展[J]. 材料导报, 2019, 33(3): 500-509.
[15] 于坤, 韩晓东, 何丽华, 贾庆明, 陕绍云, 苏红莹. 用于药物载体系统的多糖材料的修饰方法[J]. 材料导报, 2019, 33(3): 510-516.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed