Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 86-89    
  无机非金属及其复合材料 |
Sb浸润界面对InAs/InAsSb超晶格晶体结构和探测器性能的影响
齐通通1, 郭杰1, 王国伟2, 郝瑞亭1, 徐应强2, 常发然1
1 云南师范大学云南省光电信息技术重点实验室,昆明 650092;
2 中国科学院半导体研究所超晶格与微系统国家重点实验室,北京 100083
Influence of Sb-soak Interface on the Crystallization and the Detector Performance of InAs/InAsSb Superlattices
QI Tongtong1, GUO Jie1, WANG Guowei2, HAO Ruiting1, XU Yingqiang2, CHANG Faran1
1 Yunnan Key Laboratory for Opti-electronic Information Technology,Yunnan Normal University, Kunming 650092, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, CAS, Beijing 100083, China
下载:  全 文 ( PDF ) ( 4068KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分子束外延技术在GaSb衬底上生长了PIN型长波红外28 ML InAs/7 ML InAs0.48Sb0.52超晶格探测器材料,研究了Sb浸润界面对其表面形貌、晶体结构和光电性能的影响。结果发现:相对于无界面控制的超晶格,采用Sb浸润界面的超晶格表面更平整,表面粗糙度仅为1.28 ;超晶格晶体结构更完整,界面起伏明显减小,与衬底的晶格失配度由 3.26%减小到2.97%。InAs/InAsSb超晶格探测器的50%截止波长为10 μm,量子效率为3.1%;Sb浸润界面的超晶格具有更低的暗电流和更高的微分阻抗,-50 mV偏压下暗电流密度为0.12 A/cm2,零偏阻抗面积乘积(R0A)为0.44 Ω·cm2,计算得到探测率为5.06×107 cm·Hz1/2/W。Sb浸润界面有效抑制了Sb的扩散,提高了超晶格的晶体质量和探测性能,但失配应力依然很大。这些结果为高质量长波红外InAs/InAsSb超晶格的界面生长提供了依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐通通
郭杰
王国伟
郝瑞亭
徐应强
常发然
关键词:  长波红外探测器  InAs/InAsSb超晶格  分子束外延  界面生长    
Abstract: PIN-type long-wave infrared (LWIR) 28 ML InAs/7 ML InAs0.48Sb0.52 superlattice detector materials were grown on GaSb substrates by mole-cular beam epitaxy (MBE). The influence Sb-soaked interface on the surface morphology, microstructure and photoelectric properties were studied. The results showed that, compared with superlattices without interface control, the surface of superlattices with Sb-soaked interface was smoother with the roughness 1.28 . The crystal structure was more complete with the FWHM and interface fluctuations reducing significantly. The mismatch between superlattices and substrates was reduced from 3.26% to 2.97%. The 50% cut-off wavelength of InAs/InAsSb superlattice detector was 10 μm with the quantum efficiency 3.1%. The superlattice with Sb-soaked interface had lower dark current and higher differential impedance. The dark current density was 0.12 A/cm2 and R0A was 0.44 Ω·cm2 at -50 mV bias. The detectivity was calculated to 5.06×107 cm·Hz1/2/W. This indicated that Sb-soaked interface effectively inhibited the diffusion of Sb and improved the crystal quality and detection perfor-mance. But the mismatch stress caused by the interface was still very large. These results provided a basis for the interface growth of high-quality LWIR InAs/InAsSb superlattice detector.
Key words:  LWIR detectors    InAs/InAsSb superlattice    molecule beam epitaxy    interface growth
                    发布日期:  2020-07-01
ZTFLH:  TN304  
基金资助: 国家自然科学基金(61274137)
作者简介:  齐通通,2019年取得云南师范大学凝聚态物理专业硕士学位。 主要研究方向是MBE和MOCVD生长红外探测器和激光材料;郭杰,云南师范大学副教授,硕士研究生导师。2009年博士研究生毕业于西北工业大学材料学专业。在国内外学术期刊上发表论文50多篇,授权发明专利5项。其团队主要研究方向包括:Sb化物红外材料与探测器、Cu基薄膜太阳电池、GaAs基高效多结太阳电池。已培养硕士10余名。
引用本文:    
齐通通, 郭杰, 王国伟, 郝瑞亭, 徐应强, 常发然. Sb浸润界面对InAs/InAsSb超晶格晶体结构和探测器性能的影响[J]. 材料导报, 2020, 34(Z1): 86-89.
QI Tongtong, GUO Jie, WANG Guowei, HAO Ruiting, XU Yingqiang, CHANG Faran. Influence of Sb-soak Interface on the Crystallization and the Detector Performance of InAs/InAsSb Superlattices. Materials Reports, 2020, 34(Z1): 86-89.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/86
1 Sai-Halasz, Tsu R, Esaki L. Applied Physics Letters,1977,30,651.
2 Smith D L, Mailhiot C. Journal of Applied Physics,1987,62,2545.
3 Edwall D, DeWames R E,Mclevige M V. et al. Journal of Electronic Materials,1998,27,698.
4 Pines M Y, Stafsudd O M. Infrared Physics & Technology,1979,19,563.
5 Connelly B C, Metcalfe G D, Shen H, et al. Applied Physics Letters,2010,97,251117.
6 Donetsky D, Belenky G, Svensson S, et al. Applied Physics Letters,2010,97,0521.
7 Steenbergen E H, Munna K, Ouyang L, et al. Journal of Vacuum Science & Technology B,2010,30,02B107.
8 Dreyer C, Alkauskas A, Lyons J, et al. Applied Physics Letters,2016,108,141101.
9 Olson B V, Shaner E A, Kim K, et al. Applied Physics Letters,2012,101,092109.
10 Hoglund L, Ting D Z, Khoshakhlagh A, et al. Applied Physics Letters,2013,103,221908.
11 Olson B V, Grein C H, Kim J K, et al. Applied Physics Letters,2015,107,261104.
12 Webster P T, Zhang Y H, Kim J K, et al. Applied Physics Letters,2015,106,061907.
13 Haddali A, Brown G J, Razeghi M, et al. Applied Physics Letters,2014,105,121104.
14 Haddali A, Brown G J, Razeghi M, et al. Applied Physics Letters,2015,106,011104.
15 Danial Z, Liu R, Kim J K, et al. Applied Physics Letters,2015,106,071107.
16 Steenbergen E H, Brown G J, Razeghi M, et al. Applied Physics Letters,2014,104,092109.
17 Aytac Y, Olson B V, Kim J K, et al. Journal of Applied Physics,2015,118,125701.
18 Aytac Y, Olson B V, Kim J K, et al. Journal of Applied Physics,2016,119,215705.
19 Höglund L, Ting D Z, et al. Applied Physics Letters,2016,108,671.
20 David Z, Alexander Soibel, Arezou Khoshakhlagh, et al. Applied Physics Letters,2018,113,021101.
21 Michalczewski K, Kubiszyn L, Rogalski A, et al. Infrared Physics & Technology,2018,95,222.
22 Ruiting Hao, Yang Ren, Sijia Liu, et al. Journal of Crystal Growth,2017,470,33.
23 Rodriguez J B, Christol P, Cerutti L, et al. Journal of Crystal Growth,2005,274(1),6.
24 Waterman J R, Shanabrook B V, Wagner R J, et al. Semiconductor Science and Technology,1993,8(1S),S106.
25 Khoshakhlagh A, Plis E, Myers S, et al. Journal of Crystal Growth,2009,311,1901.
[1] 刘妍, 彭艳, 郭经纬, 徐朝鹏, 喇东升. 基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长研究概述[J]. 材料导报, 2019, 33(23): 3930-3938.
[2] 吕菲, 田原, 宋晶, 杨春颖, 刘雪松. 化学腐蚀工艺对锗单晶片机械强度的影响[J]. 材料导报, 2019, 33(Z2): 428-430.
[3] 王杨, 张忻, 刘洪亮, 王阳仲, 张久兴. 碲化铋基热电器件的有限元模拟与设计组装[J]. 材料导报, 2019, 33(20): 3367-3371.
[4] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[5] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[6] 赵鸣, 李天宇, 石钰. 铈镧复合氧化物对ZnVCrO陶瓷显微结构及压敏性能的影响[J]. 《材料导报》期刊社, 2017, 31(6): 120-124.
[7] 房迪, 肖清泉, 廖杨芳, 袁正兵, 王善兰, 吴宏仙. 钠钙玻璃上Mg2Si薄膜的制备及其电学性质*[J]. 《材料导报》期刊社, 2017, 31(4): 9-13.
[8] 王现彬, 王颖莉, 赵正平. Ti/Al/Ni/Au在N-polar GaN上的欧姆接触*[J]. 《材料导报》期刊社, 2017, 31(4): 14-16.
[9] 韩 贵, 陆金花, 王 敏, 李丹阳. 溶胶-凝胶法制备铜锌锡硫材料的研究进展[J]. 材料导报, 2017, 31(1): 10-17.
[10] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed