Please wait a minute...
材料导报  2019, Vol. 33 Issue (23): 3930-3938    https://doi.org/10.11896/cldb.18050170
  无机非金属及其复合材料 |
基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长研究概述
刘妍1, 彭艳1, 郭经纬2,3, 徐朝鹏2, 喇东升4,5
1 燕山大学国家冷轧板带装备及工艺工程技术研究中心,秦皇岛 066004
2 燕山大学信息科学与工程学院,秦皇岛 066004
3 燕山大学河北省信息传输与信号处理重点实验室,秦皇岛 066004
4 东北大学秦皇岛分校计算机与通信工程学院,秦皇岛 066004
5 东南大学毫米波国家重点实验室,南京 210096
A Review on the Growth of Ⅲ-Ⅴ One-dimensional Semiconductor NanowiresBased on Vapor-Liquid-Solid Mode
LIU Yan1, PENG Yan1, GUO Jingwei2,3, XU Zhaopeng2, LA Dongsheng4,5
1 National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004
2 School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004
3 Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao 066004
4 School of Computer and Communication Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004
5 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096
下载:  全 文 ( PDF ) ( 5742KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 Ⅲ-Ⅴ族一维半导体纳米线由于具有独特的性能、丰富的科学内涵而被广泛应用于微机电、光电子、光伏电、传感等方面,并在未来纳米结构器件中占有重要的战略地位,近年来引起了人们极大的兴趣和关注。探索Ⅲ-Ⅴ族一维半导体纳米线新的结构调控手段,研究具有重要应用价值的Ⅲ-Ⅴ族一维半导体纳米线的可控生长方法和技术,从而获得可应用于器件和功能实现的高质量Ⅲ-Ⅴ族一维半导体纳米线是目前各研究组的主要目标。
基于气-液-固模式的纳米线生长方法具有对纳米线形貌及晶体质量可控的优点,成为当前制备高质量Ⅲ-Ⅴ族一维半导体纳米线的主要生长技术。催化辅助生长是一种有金属催化剂参与的纳米线生长方式,它可以有效降低反应物裂解能量、提高材料成核质量、控制材料生长方向、提高反应效率、稳定材料晶体结构。自催化生长是指在纳米线生长过程中不添加其他物质作为催化剂,而由反应物自身起催化作用的生长。由于自催化生长在反应过程中未引入其他物质,所以生成物纯度较高。Ⅲ-Ⅴ族异质结构半导体纳米线常具有两种半导体各自不能达到的优良光电特性,其又可划分为纵向异质结构和横向异质结构。Ⅲ-Ⅴ族一维半导体纳米线除了可以在与其自身材料相同的基底表面上生长之外,还可在与其材料不同的基底表面上生长,即在异质基底表面生长。异质基底生长在材料兼容、光电集成等方面具有十分广阔的应用前景。
本文对基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长进行了综述,并对近些年基于催化辅助和自催化的纵向异质结构、横向异质结构以及异质基底的成长研究现状进行了总结,为推动Ⅲ-Ⅴ族一维半导体纳米线制备技术的发展提供了参考依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘妍
彭艳
郭经纬
徐朝鹏
喇东升
关键词:  纳米线  半导体  Ⅲ-Ⅴ族  气-液-固模式    
Abstract: Because of their unique properties and abundant scientific connotations, Ⅲ-Ⅴ one-dimensional semiconductor nanowires are widely used in micro-electromechanical, optoelectronic, photovoltaic, sensing and other fields, and play an important strategic role in future nanostructured devices, which have attracted great interest and attention in recent years. Exploring new structural control methods, researching controllable growth methods and technologies of Ⅲ-Ⅴ one-dimensional semiconductor nanowires with important application value, so as to obtain high-quality Ⅲ-Ⅴ one-dimensional semiconductor nanowires which can be applied to devices and functional realization are the main goals of current research groups.
The growth method of nanowires based on vapor-liquid-solid (VLS) mode has the advantage of controllability of nanowires’ morphology and crystal quality, and has become the main growth technology for high-quality Ⅲ-Ⅴ one-dimensional semiconductor nanowires. Catalyst assisted VLS growth is a kind of nanowire growth with metal catalysts. It can effectively reduce the energy of reactant pyrolysis, improve the quality of nanowire nucleation, control the direction of nanowire growth, improve the reaction efficiency and ensure the crystal structure of nanowires. Self-catalyzed VLS growth refers to the growth of nanowires catalyzed by the reactants themselves without adding other materials as catalysts. Since self-catalyzed VLS growth does not introduce other materials into the reaction process, the purity of the nanowires is high. Ⅲ-Ⅴ heterostructure semiconductor nanowires often have excellent optoelectronic properties that neither of the two semiconductors can achieve. They can also be divided into axial heterostructures and radial heterostructures. Ⅲ-Ⅴ one-dimensional semiconductor nanowires can grow not only on the same substrate surface as their own materials, but also on different substrate surfaces, i.e., on heterosubstrates. Heterosubstrate growth has broad application prospects in material compatibility and photoelectric integration.
In this paper, the growth of Ⅲ-Ⅴ one-dimensional semiconductor nanowires based on vapor-liquid-solid model is reviewed. The recent years’ research progress on the growth of axial heterostructures, radial heterostructures and heterosubstrates based on catalyst assisted and self-catalyzed methods are summarized to provide references for the development of Ⅲ-Ⅴ semiconductor nanowire fabrication technology.
Key words:  nanowire    semiconductor    Ⅲ-Ⅴ    vapor-liquid-solid mode
               出版日期:  2019-12-10      发布日期:  2019-09-30
ZTFLH:  TN304.2  
基金资助: 国家自然科学基金(51375424;61501100);河北省自然科学基金(F2019203012);东南大学毫米波国家重点实验室开放课题(K201705)
作者简介:  刘妍,2007年6月毕业于燕山大学,获得工学硕士学位。现为燕山大学国家冷轧板带装备及工艺工程技术研究中心实验师。目前主要研究领域为机械设计及微纳技术。
郭经纬,2011年7月毕业于北京邮电大学,获得工学博士学位。现为燕山大学信息科学与工程学院教师。目前主要从事半导体微纳技术方面的研究。
引用本文:    
刘妍, 彭艳, 郭经纬, 徐朝鹏, 喇东升. 基于气-液-固模式的Ⅲ-Ⅴ族一维半导体纳米线的生长研究概述[J]. 材料导报, 2019, 33(23): 3930-3938.
LIU Yan, PENG Yan, GUO Jingwei, XU Zhaopeng, LA Dongsheng. A Review on the Growth of Ⅲ-Ⅴ One-dimensional Semiconductor NanowiresBased on Vapor-Liquid-Solid Mode. Materials Reports, 2019, 33(23): 3930-3938.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18050170  或          http://www.mater-rep.com/CN/Y2019/V33/I23/3930
1 Deng M T, Vaitiekenas S, Hansen E B, et al. Science,2016,354(6319),1557.2 Li M, Xu Z, Li Z, et al. Crystal Research and Technology,2016,51(12),702.3 Xu Z, Huangfu H, Li X, et al. Optics Communications,2016,377,104.4 Xu Z, Huangfu H, He L, et al. Optics Communications,2017,382,332.5 Zong Y, Huang H, Song W, et al. Crystal Research and Technology,2016,51(12),757.6 Li Ran, Huang Hui, Ren Xiaomin, et al. Journal of Semiconductors,2011,32(5),053003.7 Stettner T, Kostenbader T, Ruhstorfer D, et al. ACS Photonics,2017,4(10),2537.8 Jean C, Belliard L, Cornelius T, et al. Nano Letters,2016,16(10),6592.9 Han M, Zhou W. Journal of Magnetism and Magnetic Materials,2018,457,52.10 Najar A, Jouiad M. Solar Energy Materials and Solar Cells,2018,180,243.11 Zhang P, Liu Y, Guo J, et al. Advanced Materials Research,2013,774,860.12 Liu Y, Peng Y, Guo J, et al. AIP Advances,2017,7(8),085104.13 Liu Y, Peng Y, Guo J, et al. AIP Advances,2018,8(5),055108.14 Choi H J. Vapor-liquid-solid growth of semiconductor nanowires, Semiconductor Nanostructures for Optoelectronic Devices, Springer, Berlin, Heidelberg,2011.15 Cirlin G E, Dubrovskii V G, Samsonenko Y B, et al. Physical Review B,2010,82,035302.16 Dubrovskii V G, Xu T, Alvarez A D, et al. Nano Letters,2015,15(7),5580.17 Samsonenko Y B, Cirlin G E, Khrebtovb A I, et al. Semiconductors,2011,45(4),431.18 Shan C, Yong J, Yang Q, et al. AIP Advances,2018,8(4),045001.19 Ye X, Huang H, Ren X, et al. Acta Physica Sinica,2011,60(3),036103(in Chinese).叶显,黄辉,任晓敏,等.物理学报,2011,60(3),036103.20 Kilic B, Turkdogan S, Astam A, et al. Journal of Nanoparticle Research,2018,20(1),1121 Haas F, Zellekens P, Wenz T, et al. Nanotechnology,2017,28(44),445202.22 Guo J, Huang H, Ding Y, et al. Journal of Crystal Growth,2012,359,30.23 Guo J, Huang H, Zhang J, et al. Journal of Applied Physics,2013,113(11),114301.24 Huang H, Ren X, Ye X, et al. Nano Letters,2010,10(1),64.25 Li S, Zhou X, Kong X, et al. Journal of Crystal Growth,2016,440,81.26 Cirlin G E, Dubrovskii V G, Soshnikov I P, et al. Physica Status Solidi RRL,2009,3(4),112.27 Ren X, Huang H, Dubrovskii V G, et al. Semiconductor Science and Technology,2010,26(1),014034.28 Ye X, Huang H, Guo J, et al. Journal of Semiconductors,2010,31(7),073001.29 Guo J, Huang H, Ren X, et al. Journal of Vacuum Science & Technology B,2011,29(3),030603.30 Park J H, Gambin V, Kodambaka S. Thin Solid Films,2016,607,43.31 Ilkiv I V, Reznik R R, Kotlyar K P, et al. Journal of Physics: Conference Series,2017,917(3),032035.32 Wang Y, Zhang X, Sun X, et al. Optics and Laser Technology,2016,85,85.33 Pickering E, Bo A, Zhan H, et al. Nanoscale,2018,10(5),2588.34 Li B, Yan X, Zhang X, et al. Nanoscale Research Letters,2017,12,34.35 Ahmad E, Ojha S K, Kasanaboina P K, et al. Semiconductor Science and Technology,2017,32(3),03500236 Guo J, Huang H, Ren X, et al. Chinese Physics Letters,2011,28(3),036101.37 Guo J, Huang H, Ren X, et al. Journal of Materials Science & Technology,2011,27(6),507.38 Yan X, Zhang X, Ren X, et al. Nano Letters,2011,11(9),3941.39 Huang H, Ren X, Ye X, et al. Nanotechnology,2010,21(47),475602.40 Irber D M, Seidl J, Carrad D J, et al. Nano Letters,2017,17(8),4886.41 Cirlin, G E, Reznik R R, Shtrom I V, et al. Journal of Physics D: Applied Physics,2017,50(48),48400342 Frigeri C, Scarpellini D, Fedorov A, et al. Applied Surface Science,2017,395,29.43 Yuan H, Li L, Li Z, et al. Chemical Physics Letters,2018,692,28.44 Beznasyuk D V, Robin E, Hertog M D, et al. Nanotechnology,2017,28(36),365602.45 Rieger T, Zellekens P, Demarina N, et al. Nanoscale,2017,9(46),18392.46 Halder N N, Kelrich A, Kauffmann Y, et al. Journal of Crystal Growth,2017,463,10.47 Yan X, Tang F, Wu Y, et al. Journal of Crystal Growth,2017,468,185.48 Ji X, Yang X, Yang T. Nanoscale Research Letters,2017,12,428.49 Priante G, Glas F, Patriarche G, et al. Nano Letters,2016,16(3),1917.50 Ahtapodov L, Munshi A M, Nilsen J S, et al. Nanotechnology,2016,27(44),445711.51 Hilse M, Jenichen B, Herfort J. AIP Advances,2017,7(5),056305.52 La R, Liu R, Yao W, et al. Applied Physics Letters,2017,111(7),072106.
[1] 潘留仙, 夏庆林. 新型二维半导体材料砷烯的研究进展[J]. 材料导报, 2019, 33(z1): 22-27.
[2] 原禧敏, 杨宏伟, 李郁秀, 巢云秀, 李耀, 陈家林, 陈力. 无卤素离子辅助合成纳米银线及其在柔性透明导电薄膜中的应用[J]. 材料导报, 2019, 33(z1): 300-302.
[3] 李志航, 宁洪龙, 李晓庆, 陶瑞强, 刘贤哲, 蔡炜, 陈建秋, 王磊, 姚日晖, 彭俊彪. 基于多成核机制的银纳米线制备研究[J]. 材料导报, 2019, 33(z1): 303-306.
[4] 高科, 李万万. 近红外二区光声成像造影剂的研究进展[J]. 材料导报, 2019, 33(z1): 481-484.
[5] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[6] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[7] 孙健武, 葛美英, 尹桂林, 张芳, 何丹农. 介晶半导体材料的合成及应用研究进展[J]. 材料导报, 2019, 33(7): 1119-1124.
[8] 阮子林, 郝振亮, 张辉, 卢建臣, 蔡金明. Cu2-xS(0≤x≤1)化合物:制备技术、物理特性及应用[J]. 材料导报, 2019, 33(7): 1141-1155.
[9] 邹宇新, 邱佳佳, 席风硕, 杨玺, 李绍元, 马文会. 纳米金属银、铜辅助化学刻蚀制绒金刚线切割多晶硅的研究[J]. 材料导报, 2018, 32(21): 3706-3711.
[10] 何霄,邹宇新,邱佳佳,杨玺,李绍元,马文会. 交替刻蚀制备有序锯齿形硅纳米线阵列及其光学性能研究[J]. 《材料导报》期刊社, 2018, 32(2): 167-170.
[11] 黄训吉,杨杰,李广洋,王茺,杨宇. 分子束外延制备稀铁磁性MnxGe1-x量子点研究进展[J]. 材料导报, 2018, 32(19): 3338-3347.
[12] 唐燕, 阮海波, 蒲勇, 张进. 铜纳米线复合透明电极的构筑及应用研究进展[J]. 材料导报, 2018, 32(19): 3423-3434.
[13] 康淮,陆轴,钟志有,龙浩. 磁控溅射制备镁镓共掺氧化锌透明半导体薄膜及其性能研究[J]. 《材料导报》期刊社, 2018, 32(11): 1938-1942.
[14] 刘萍, 曾葆青, 王亚雄, 汪江浩. 纳米线透明导电薄膜的制备及在光电器件中的应用*[J]. 《材料导报》期刊社, 2017, 31(7): 6-18.
[15] 陈晓萍, 马俊, 李宝华, 康飞宇. 三维结构磷酸铁锂纳米线阵列的制备及其电化学性能[J]. 《材料导报》期刊社, 2017, 31(4): 1-4.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed