Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 48-52    
  无机非金属及其复合材料 |
第一性原理分析La、W共掺杂SnO2的导电性
孙绍琦1, 王景芹1, 朱艳彩1, 张广智2, 包志舟3
1 河北工业大学,省部共建电工装备可靠性与智能化国家重点实验室,天津 300130;
2 上海良信电器有限公司,上海 200137;
3 浙江人民电器有限公司,温州 325604
First Principle Analysis of the Conductivity of La-W Co-doped SnO2
SUN Shaoqi1, WANG Jingqin1, ZHU Yancai1, ZHANG Guangzhi2, BAO Zhizhou3
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2 Shanghai Liangxin Electrical Co., Ltd., Shanghai 200137, China3 People Ele Appliance Group, Wenzhou 325604, China
下载:  全 文 ( PDF ) ( 3738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 AgSnO2触头材料在使用过程中会析出导电性很差的SnO2晶体,从而影响继电器的使用寿命。为了提升SnO2的导电性,通过Material Studio软件中的CASTEP模块,利用第一性原理,在SnO2晶体中分别掺杂单一元素La、W以及共掺La、W,使掺杂比例保持在16.8%,计算得到晶体的晶胞参数、能带结构、态密度、原子布居、焓变值以及电导率等。结果表明:相对于单元素掺杂,共掺La、W后,带隙值减小为0.222 eV,两个5d轨道同时作用,价带顶穿过费米能级,增加杂质轨道。焓变值绝对值增加为11.635 eV,说明掺杂后结构较稳定。掺杂后La、W与O成键相对于Sn-O键成键作用更强,加剧电子转移。电导率为本征SnO2的46.653倍,导电性提升。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙绍琦
王景芹
朱艳彩
张广智
包志舟
关键词:  触头材料  镧-钨共掺杂  第一性原理  导电性    
Abstract: The AgSnO2 contact material will precipitate SnO2 crystals with poor conductivity during use, which will affect the service life of the relay. In order to improve the conductivity of SnO2, through the first principle of the CASTEP module in Material Studio software, the single element La, W and the co-doped La and W were doped respectively in the SnO2 crystal to maintain the doping ratio of 16.8%. The unit cell parameters, band structure, density of states, atomic population,enthalpy change and electrical conductivity of the crystal were calculated. It is concluded that compared with single-element doping, after co-doping La and W, the band gap value is reduced to 0.222 eV, two 5d orbitals act simultaneously, and the valence band top passes through the Fermi level, increasing the impurity orbital. The absolute value of the enthalpy change increased to 11.635 eV, indicating that the structure is stable after doping. After doping, the bonding of La, W and O is stronger than that of Sn-O bonding, which intensifies the electron transfer. Its electrical conductivity is 46.653 times than that of the SnO2, and the electrical conductivity is improved.
Key words:  contact materials    lanthanum-tungsten co-doped    first principle    electrical conductivity
                    发布日期:  2020-07-01
ZTFLH:  TM23  
基金资助: 国家自然科学基金(51777057)
作者简介:  孙绍琦,河北工业大学研究生,电气工程专业。主要从事电器电接触材料的研究;王景芹,河北工业大学教授,博士研究生导师。中国电工技术学会电工产品可靠性专业委员会副主任委员兼秘书长、中国电工技术学会低压电器专业委员和电弧电接触及电弧专业委员会委员。2009年入选国家新世纪百千万人才工程,2007年入选河北省省管优秀专家,2012年入选国务院政府特贴专家。长期从事电气工程领域电器可靠性与电器电接触研究与应用的教学与科研工作,承担国家自然科学基金及重点项目3项,教育部、河北省及天津市科研项目10余项。发表论文200余篇,撰写电器可靠性领域专著4部,参加起草国家标准1部,获得授权发明专利9项。
引用本文:    
孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
SUN Shaoqi, WANG Jingqin, ZHU Yancai, ZHANG Guangzhi, BAO Zhizhou. First Principle Analysis of the Conductivity of La-W Co-doped SnO2. Materials Reports, 2020, 34(Z1): 48-52.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/48
1 郑忠.AgSnO2NiO电触头材料的组织与性能研究.硕士学位论文,昆明理工大学,2017.
2 赵浩融,罗韦,谢永忠,等.电工材料,2016(1),24.
3 王景芹,陆俭国,温鸣,等.稀有金属材料与工程,2001(3),205.
4 朱艳彩.添加稀土氧化物的银氧化锡触头材料的研究.硕士学位论文,河北工业大学,2017.
5 于双淼,王景芹,陈令,等.稀有金属,DOI:10.13373/j.cnki.cjrm.XY19040015.
6 逯瑶,王培吉,张昌文,等.物理学报,2011,60(11),219
7 许春辉,杨平.半导体光电,DOI:10.16818/j.issn1001-5868.2019.04.017.
8 伏春平,孙凌涛.原子与分子物理学报,2018,35(5),867.
9 何海英,张召君,陈雅丽,等.原子与分子物理学报,DOI:10.3969/j.issn.1000-0364.2019.05.024.
10 康慧玲,王景芹,张颖,等.材料科学与工程学报,2019,37(3),463.
11 曹曙光,谢明,陈力,等.贵金属,2015(1),17.
12 赵彩甜,王景芹,蔡亚楠,等.中国有色金属学报,2017,27(12),2552.
13 刘光华.稀土材料与应用技术,北京工业出版社,2005.
14 El-Shazly T S, Hassan W M I, Rehim S S A, et al. Applied Physics A,2016,122(9),859.
15 付现凯,宫长伟,王家恒,等.人工晶体学报,2015,44(4),1114.
16 张勇,白朴存,崔晓明,等.内蒙古工业大学学报,2017,36(4),271.
17 丁超,李卫,刘菊燕,等.物理学报,2018,67(21),141.
18 康慧玲,王景芹,张颖.贵金属,2018,39(2),34.
19 刘恩科,朱秉升,罗晋生.半导体物理学(第六版),电子工业出版社,2003.
[1] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[2] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[3] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[4] 徐允, 张兆春, 郭海波, 谢耀平. 铟-镧系元素(La,Ce,Pr和Nd)金属间化合物磁学和热力学性质的第一性原理计算[J]. 材料导报, 2020, 34(2): 2093-2099.
[5] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[6] 赵宇鹏, 贺勇, 张敏, 史俊杰. 非金属掺杂二维ZnS的磁性和光学性质的第一性原理研究[J]. 材料导报, 2020, 34(10): 10013-10017.
[7] 贾颖. Li在石墨烯表面吸附与迁移的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 43-47.
[8] 黄泰愚, 范舟, 刘建仪. 硫在镍基合金钝化膜NiO表面吸附的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 380-382.
[9] 张然, 谢东, 冷永祥, 景凤娟, 黄楠. NiTi合金(B2, B19’和R相)键合特征与弹性性质的第一性原理研究[J]. 材料导报, 2019, 33(Z2): 383-388.
[10] 王骏齐, 张衍敏, 陈天弟, 王恒, 田遴博, 冯超, 夏金宝, 张飒飒. 不同浓度Ag掺杂ZnS的电子结构及光学性质的第一性原理研究[J]. 材料导报, 2019, 33(z1): 33-36.
[11] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[12] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[13] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[14] 王枭, 于晓华, 李晓宇, 刘成, 钟毅, 詹肇麟, 邓久帅. 纯Fe表面机械研磨处理对Ti原子扩散特性影响的第一性原理计算及实验验证[J]. 材料导报, 2019, 33(6): 1017-1021.
[15] 周勇, 党墨含, 孙良, 翟文彦, 董会, 高倩, 赵飞, 彭建洪. Mg13Al14和Mg17Al12中间合金的第一性原理研究[J]. 材料导报, 2019, 33(24): 4111-4116.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed