Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 413-419    
  金属与金属基复合材料 |
合金元素对激光熔覆高熵合金涂层影响的研究进展
吴韬1, 段佳伟2, 陈小明3,4, 俞立涛1, 陈云祥1, 石淑琴1
1 浙江机电职业技术学院,杭州 310053;
2 杭州盛镭激光科技有限公司,杭州 311217;
3 水利部杭州机械设计研究所,杭州 310012;
4 浙江省水利水电装备表面工程技术研究重点实验室,杭州 310012
Research Progress of the Effect of Alloying Element on Laser CladdingHigh-entropy Alloy Coatings
WU Tao1, DUAN Jiawei2, CHEN Xiaoming3,4, YU Litao1, CHEN Yunxiang1, SHI Shuqin1
1 Zhejiang Institute of Mechanical and Electrical Engineering, Hangzhou 310053, China;
2 Hangzhou Senlay Laser Technology Co., Ltd, Hangzhou 311217, China;
3 Hangzhou Mechanical Desigh Research Institute, Ministry of Water Resource, Hangzhou 310012, China;
4 Key Laboratory of Research on Hydraulic and Hydro-power Equipment Surface Engineering Technology of Zhejiang Province, Hangzhou 310012, China
下载:  全 文 ( PDF ) ( 18694KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 激光熔覆能够实现对能量和品质的精确控制,对基体的热影响小,涂层稀释率低,并与基体形成冶金结合,是目前制备涂层的常用手段。相比于块体材料,涂层的应用减少了材料的浪费,更符合环保理念。采用激光熔覆技术制备高熵合金涂层是近年来高熵合金领域的主要热点之一。由于高熵合金的“鸡尾酒效应”,主元元素的选择对涂层性能起着决定性的作用。因此本文主要介绍激光熔覆制备高熵合金涂层时合金元素主元对其相形成规律以及耐磨、耐腐蚀、抗氧化等性能的影响。重点介绍了高熵合金中常用主元元素Fe、Cr、Mn、Al、Ti、Co、Ni几种金属主元和C、N、B、Si四种非金属主元的影响规律,结果表明,通过宏观和微观的合金化可以改变高熵合金相的组成及结构,从而改善材料的性能。最后还对激光熔覆高熵合金涂层的应用前景以及未来研究的方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴韬
段佳伟
陈小明
俞立涛
陈云祥
石淑琴
关键词:  高熵合金  涂层  激光熔覆  合金元素    
Abstract: Laser cladding is a widely used coating preparation method, which can realize the precise control of energy and quality, has little thermal effect on the substrate, has low coating dilution ratio, and forms metallurgical combination with the substrate. Compared with bulk materials, the application of coating reduces the waste of materials and conforms to the concept of environmental protection. In recent years, laser cladding technology is one of the main hot spots in the field of high-entropy alloy. Due to the “cocktail effect” of high-entropy alloy, the choice of main elements plays a decisive role in the coating performance. Therefore, this paper mainly introduces the influence of the main elements of alloy elements on the phase formation and the properties of wear resistance, corrosion resistance and oxidation resistance in the laser cladding of high-entropy alloy coating. This paper mainly introduces the influence rules of the main metal elements Fe, Cr, Mn, Al, Ti, Co, Ni and the four non-metal elements C, N, B, Si in the high-entropy alloy. The results show that the composition and structure of the high-entropy alloy phase can be changed by macro and micro alloying, so as to improve the properties of the material. In addition, the application prospect and future research direction of laser cladding high-entropy alloy coating are also prospected.
Key words:  high-entropy alloys (HEAs)    coatings    laser cladding    alloying elements
                    发布日期:  2020-07-01
ZTFLH:  TG139  
基金资助: 浙江机电集团公司科技计划项目(2019JD015);浙江机电职业技术学院校企合作项目(C-7276-18-004);浙江机电职业技术学院教改建设类项目(A-0154-19-310;A-0151-19-311;A-0152-18-304);浙江省高校国内访问工程师项目
作者简介:  吴韬,浙江机电职业技术学院讲师,2013年研究生毕业于北京科技大学材料科学与工程专业。现主要从事高性能合金材料、激光增材制造、关键零部件检测与失效分析等方面的教学与研究工作。完成国家科技支撑计划项目、水利部“948”项目、浙江省公益项目等多项科研项目。同时,积极推进技术成果转化,主持校企合作课题4项,发表国内外科研论文十余篇,获得一项国家专利。
引用本文:    
吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
WU Tao, DUAN Jiawei, CHEN Xiaoming, YU Litao, CHEN Yunxiang, SHI Shuqin. Research Progress of the Effect of Alloying Element on Laser CladdingHigh-entropy Alloy Coatings. Materials Reports, 2020, 34(Z1): 413-419.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/413
1 Yeh J W, Lin S J, Chin T S, et al. Metallurgical and Materials Transactions A,2004,35(8),2533.
2 Yeh J W, Chen S K, Lin S J, et al. Advanced Engineering Materials,2004,6(5),299.
3 Zhang Y, Zuo T T, Tang Z, et al. Progress in Materials Science,2014,61(8),1.
4 张勇,陈明彪,杨潇.先进高熵合金技术,化学工业出版社,2019.
5 Gludovatz B, Hohenwarter A, Catoor D, et al. Science,2014,345(6201),1153.
6 Lim X. Nature,2016,533(7603),306.
7 Joseph J. Material Science and Engineer A,2015(633),184.
8 Zhang Y, Yang X, Liaw P K. Journal of the Minerals Metals & Materials Society,2012,64,830.
9 马壮,王倪,王恩杰.材料导报:综述篇,2015,29(9),140.
10 Peng Y B, Zhang W, Li T C, et al. International Journal of Refractory Metals&Hard Materials,2019,84,1.
11 Shu F Y, Zhang B L, Liu T, et al. Surface & Coatings Technology,2019,358,667.
12 隽永飞,李军,蒋云强.应用激光,2018,38(1),130.
13 Zhang G J, Tian Q W, Yin K X, et al. Intermetallics,2020,119,1.
14 Shu F Y, Yang B, Dong S Y, et al. Applied Surface Science,2018,450,538.
15 程一丹.Al-Co-Cr-Fe-Mn-Ni-C系高熵合金组织及性能的研究.硕士学位论文,西北工业大学,2018.
16 孔蛟润.铝和锰元素对CoCrFeNiTi系高滴合金组织与性能的影响.硕士学位论文,大连理工大学,2016.
17 彭存远,马明星,叶晓阳,等.应用激光,2014,34(3),175.
18 黄标,张冲,程虎,等.中国表面工程,2014(6),82.
19 Zhang C, Huang B, Dai P Q. China Surface Engineering,2016,29(1),32.
20 Chang F, Cai B J, Zhang C, et al. Surface & Coatings Technology,2019,359,132.
21 Jiang Y Q, Li J, Juan Y F, et al. Journal of Alloys and Compounds,2019,775,1.
22 Lin C M, Juan C C, Chang C H, et al. Journal of Alloys and Compounds,2015,624,100.
23 Ye X, Ma M, Cao Y, et al. Physics Procedia,2011,12(1),303.
24 郑必举,蒋业华,胡文.功能材料,2016,6(47),167.
25 Cui Y, Shen J Q, Manladan S M, et al. Applied Surface Science,2020,512,1.
26 Zhang H, He Y Z, Pan Y. Scripta Materialia,2013,69,342.
27 Jiang L, Lu Y P, Dong Y,et al. Intermetallics,2014,44,37.
28 Gu Z, Xi S Q, Sun C F. Journal of Alloys and Compounds,2020,819,1.
29 Guo Y X, Shang X J, Liu Q B. Surface & Coatings Technology,2018,344,353.
30 Qiu X W. Results in Physics,2019,12,1737.
31 Zhang R F, R B, C B, et al. Results in Physics,2019,15,1.
32 金鑫源,李忠文,张有凤,等.热加工工艺,2016,45(20),143.
33 Wu C L, Zhang S, Zhang C H, et al. Surface & Coatings Technology, 2017,315,368.
34 刘德飘,刘贵仲,郭景杰.稀有金属与硬质合金,2015,43(5),50.
35 Stepanov N D, Yurchenko N Y, Tikhonovsky M A, et al. Journal of Alloys and Compounds,2016,687,59.
36 Sha C H, Zhou Z F, Xie Z H, et al. Applied Surface Science,2020,507,1.
37 陈国进,张冲,唐群华,等.稀有金属材料与工程,2015,44(6),1418.
38 张冲,吴炳乾,王乾廷,等.稀有金属材料与工程,2017,46(9),2640.
39 吴炳乾,饶湖常,张冲,等.表面技术,2015,44(12),85.
40 陈磊,刘其斌.应用激光,2014,34(6),494.
41 Gorr B, Mueller F, Christ H J, et al. Journal of Alloys and Compounds,2016,688,468.
[1] 程海松, 刘岗, 雷刚, 谭俊, 陈春彦, 梁勇, 苏岳亮, 吴开颜, 杜永斌. 燃煤锅炉受热面高温腐蚀防护涂层技术研究进展[J]. 材料导报, 2020, 34(Z1): 433-435.
[2] 蒋三生, 梁立帅, 舒凤远. 45钢表面激光熔覆Co基合金覆层工艺优化[J]. 材料导报, 2020, 34(Z1): 448-451.
[3] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[4] 刘国熠, 赵晓明, 刘元军, 谌玉红. 不同隔热填料对双层涂层柔性复合材料热防护性能的影响[J]. 材料导报, 2020, 34(8): 8194-8199.
[5] 张梦清, 乔玉林, 吉小超, 周克兵, 张伟, 于鹤龙. 线圈扫描速度对感应熔覆NiCrBSi涂层组织与性能的影响[J]. 材料导报, 2020, 34(6): 6120-6125.
[6] 袁晓静, 关宁, 侯根良, 陈小虎, 马爽. 高温固体自润滑涂层的制备及可靠性的研究进展[J]. 材料导报, 2020, 34(5): 5061-5067.
[7] 谭雅琴, 王晓明, 朱胜, 乔珺威. 高熵合金强韧化的研究进展[J]. 材料导报, 2020, 34(5): 5120-5126.
[8] 杨玉明, 李伟, 刘平, 张柯, 马凤仓, 刘新宽, 陈小红, 何代华. 碳化硅掺杂Ni-P-PTFE复合涂层的微观结构和力学性能[J]. 材料导报, 2020, 34(4): 4153-4157.
[9] 李慧莹, 赵君文, 戴光泽, 韩靖, 李旭嘉. 钼酸钠含量对无铬锌铝涂层性能的影响[J]. 材料导报, 2020, 34(2): 2105-2109.
[10] 韩雪莹, 刘新利, 吴壮志, 段柏华, 王德志. 含难熔金属涂层的研究进展[J]. 材料导报, 2020, 34(13): 13146-13154.
[11] 谭金花, 孙荣禄, 牛伟, 刘亚楠, 郝文俊. 激光扫描速度对TC4合金表面激光熔覆复合涂层组织及性能的影响[J]. 材料导报, 2020, 34(12): 12094-12100.
[12] 汤鹏君, 李旭强, 翟海民, 李文生. 不同基体超音速火焰喷涂Cr3C2-20NiCr涂层的性能[J]. 材料导报, 2020, 34(12): 12115-12121.
[13] 刘广, 周溯源, 杨海威, 陈鹏, 欧阳潇, 严明. 3D打印CoCrFeMnNi高熵合金的微观组织、室温及低温力学性能[J]. 材料导报, 2020, 34(11): 11076-11080.
[14] 沈利华, 杨晓芳. 基于文献计量分析的高熵合金研究进展[J]. 材料导报, 2020, 34(11): 11171-11178.
[15] 施佳鑫, 朱卫华, 朱红梅, 陈志勇, 刘晋京, 史新灵, 王新林. CaB6对激光熔覆生物陶瓷涂层组织和生物学性能的影响[J]. 材料导报, 2020, 34(10): 10030-10034.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed