Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 316-321    
  金属与金属基复合材料 |
超轻镁锂合金熔炼工艺研究
宋文杰1, 刘洁1, 董会萍1, 张光2, 王彤3
1 陕西科技大学机电工程学院,西安 710021;
2 西北工业大学航空学院,西安 710072;
3 山西八达镁业有限公司,运城 043800
Research on Melting Process of Ultralight Magnesium-Lithium Alloys
SONG Wenjie1, LIU Jie1, DONG Huiping1, ZHANG Guang2, WANG Tong3
1 College of Mechanical and Electrical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China;
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China3 Shanxi Bada Magnesium Co.,Ltd., Yuncheng 043800, China
下载:  全 文 ( PDF ) ( 5992KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁锂合金是目前最轻的金属结构材料,因其低密度、高比强度和高比刚度等突出优点,在航空航天、武器装备、汽车等领域具有广阔的应用前景。但是要实现超轻镁锂合金的大规模应用,必须解决其熔炼困难的问题。本工作对目前的铸造镁锂合金熔炼工艺进行研究,以Mg-8Li-3Al-3Zn-1Y为研究对象,采用SF6气体保护浇铸空冷、覆盖剂表面保护炉冷、覆盖剂全面保护炉冷、覆盖剂+Ar气保护浇铸空冷和真空感应熔炼+Ar气保护浇铸炉冷五种熔炼工艺来制备镁锂合金,对比研究五种熔炼工艺制备镁锂合金的效果及力学性能分析,总结各种熔炼工艺的优缺点。本研究对获得完整、无缺陷、组织优化和高性能的铸造镁锂合金,以及优化镁锂合金的规模化生产和制备工艺,具有重要的指导和借鉴意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋文杰
刘洁
董会萍
张光
王彤
关键词:  镁锂合金  熔炼工艺  力学性能  减重材料  生产成本    
Abstract: Magnesium-lithium alloy as the lightest metal structural material at present, it has broad application prospects in aerospace, weapons and equipment, automotive and other fields due to its outstanding advantages such as low density, high specific strength, and high specific stiffness.However, in order to realize the large-scale application of ultralight magnesium-lithium alloys, it is necessary to solve the problem of difficult melting. This article reviews the current melting process of magnesium-lithium alloys, and takes Mg-8Li-3Al-3Zn-1Y as the research object, adopts SF6 gas protection casting air cooling, covering agent surface protection furnace cooling, covering agent comprehensive protection furnace coo-ling, covering agent and Ar gas protection casting air cooling and vacuum induction melting and Ar gas protection casting furnace cooling five melting processes to prepare magnesium-lithium alloys. The effects and mechanical properties of magnesium-lithium alloys prepared by five melting processes were compared and analyzed. Summarize the advantages and disadvantages of each melting process. The research in this paper has important guidance and reference significance for obtaining complete, defect-free, structure-optimized and high-performance cast magnesium-lithium alloys, as well as optimizing the large-scale production and preparation of magnesium-lithium alloys.
Key words:  magnesium-lithium alloy    melting process    mechanical properties    weight-reducing material    production cost
                    发布日期:  2020-07-01
ZTFLH:  TG292  
基金资助: 国家装备预研领域基金(61409220408);国家留学基金(201808615136);陕西省重点研发计划(2019KW-023);陕西科技大学引进博士科研启动基金(2016GBJ-02)
作者简介:  宋文杰,陕西科技大学机电工程学院副教授、硕士研究生导师。2016年毕业于西北工业大学材料加工工程专业(硕博连读),西北工业大学优秀博士学位论文获得者,工学博士。同年加入陕西科技大学机电工程学院工作至今,主要从事镁锂合金熔炼工艺、微观结构及力学性能的研究。主持国防装备预研领域基金、国家留学基金、陕西省重点研发计划、西北工业大学博士论文创新基金、陕西科技大学“引进博士科研启动基金”等5项,参与国防基础科研项目、国家重大专项、凝固技术国家重点实验室基金、先进镁基材料山西省重点实验室开放课题等5项。在Journal of Power Sources、Applied Surface Science、Journal of Alloys and Compounds等国内外重要期刊发表高水平SCI论文十余篇,申请国家发明专利4件,参加国际和国内学术会议报告6次,其中邀请报告2次。
引用本文:    
宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
SONG Wenjie, LIU Jie, DONG Huiping, ZHANG Guang, WANG Tong. Research on Melting Process of Ultralight Magnesium-Lithium Alloys. Materials Reports, 2020, 34(Z1): 316-321.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/316
1 Guo F, Liu L, Ma Y L, et al. Materials Science and Engineering A,2020,772,138792.
2 Sun Y H, Wang R C, Peng C Q, et al. Transactions of Nonferrous Metals Society of China,2017,27(7),1455.
3 Sahoo B N, Panigrahi S K. Materials & Design,2016,109,300.
4 王昌,赵曦,艾迪,等.广东化工,2017,44(20),132.
5 Chang L L, Shi C C, Cui H W. Transactions of Nonferrous Metals Society of China,2018,28(1),30.
6 Cao F R, Zhou B J, Ding X, et al. Journal of Alloys & Compounds,2018,745,436.
7 Guo F, Jiang L Y, Ma Y L, et al. Scripta Materialia,2020,179,16.
8 王祝堂.轻合金加工技术,2018,46(1),48.
9 Mahmudi R, Shalbafi M, Karami M, et al. Materials & Design,2015,75,184.
10 Zou Y, Zhang L H, Li Y, et al. Journal of Alloys and Compounds,2018,735,2625.
11 Zhang Z Y, Peng X D, Yan L, et al. Rare Metal Materials and Enginee-ring,2017,46(8),2055.
12 Tang Y, Le Q C, Misra R D K, et al. Materials Science and Engineering A,2018,712,266.
13 Król M. Journal of Thermal Analysis & Calorimetry,2018,133(1),237.
14 Tan Q Y, Atrens A, Mo N, et al. Corrosion Science,2016,112,734.
15 Czerwinski F. International Materials Reviews,2015,60(5),264.
16 严雄仲.中国化工贸易,2017,9(8),65.
17 张英,任智森,杨国英.有色金属加工,2007,36(4),14.
18 秦凯伦,孙婷婷,豆昌露,等.科学技术创新,2018(6),8.
19 Zhang J, Zhang Y, Wu G H, et al. Materials Science & Engineering A,2015,621,198.
20 姚新兆.镁锂合金熔铸工艺及组织性能的研究.硕士学位论文,湖南大学,2006.
21 张诗昌,段汉桥,蔡启舟,等.特种铸造及有色合金,2000(6),51.
22 李克杰,李全安.热加工工艺,2012,41(5),27.
23 Chen B, Lu C, Lin D L, et al. Transactions of Nonferrous Metals Society of China,2012,22(4),773.
24 Kim J H, Kim Y H, Yoo H S, et al. Journal of Nanoscience & Nanotechnology,2016,16(11),11233.
25 Cashion S P, Ricketts N J, Hayes P C. Journal of Light Metals,2002,2(1),37.
26 李明照.太原理工大学学报,2003,34(3),318.
27 穆彦青,靳玉春,黄志伟,等.热加工工艺,2011,40(11),21.
28 Ha W, Kim Y J. Journal of Alloys and Compounds,2006,422(1),208.
29 付彭怀,王渠东,蒋海燕,等.铸造技术,2005,26(6),489.
30 Li Y M, Peng X D, Hu F P, et al. Rare Metal Materials and Enginee-ring,2017,46(7),1775.
31 Zhao J, Zhang J, Liu W C, et al. Materials Science & Engineering A,2016,650,240.
32 Ding H B, Liu Q, Zhou H T, et al. Transactions of Nonferrous Metals Society of China,2017,27(12),2587.
33 杨云龙,曾建民.铸造技术,2018,39(5),960.
34 Yu X W, Shen S J, Jiang B, et al. Applied Surface Science,2016,370,357.
35 樊建锋,谢辉,杨根仓,等.热加工工艺,2003(5),46.
36 陈虎魁,刘建睿,沈淑娟,等.材料导报,2004,18(4),82.
37 严炎祥,姚敏.特种铸造及有色合金,1996(4),41.
38 杜鹏.稀土Y、Gd对镁锂合金组织及性能的影响.硕士学位论文,东北大学,2014.
39 董天顺,刘金海,陈刚,等.铸造工程,2013,37(3),5.
40 Singh P B, Sabat R K, Kumaran S, et al. Journal of Materials Enginee-ring & Performance,2018,27(2),864.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
[6] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[7] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[8] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[9] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[10] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[11] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[12] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[13] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[14] 信思树, 王镇华, 李春玲, 王清. 体心立方BCC基多元合金中的共格析出及强化[J]. 材料导报, 2020, 34(7): 7130-7137.
[15] 袁小亚, 彭一豪, 孙立涛, 郑旭煦, 秦泽海. 热还原氧化石墨烯在水泥水化介质中的分散及其增强砂浆的性能与机理研究[J]. 材料导报, 2020, 34(6): 6075-6080.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed