Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 307-311    
  金属与金属基复合材料 |
退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响
江雯1,2, 蒋璐瑶1,2, 黄伟九1,2, 郭非1,2, 董海澎1,2
1 重庆理工大学材料科学与工程学院,重庆 400054;
2 重庆理工大学模具技术重庆市重点实验室,重庆 400054
Effect of Annealing Treatment on Microstructure and Mechanical Properties ofLZ91 Dual-Phase Magnesium-Lithium Alloy Processed by Friction Stir Processing
JIANG Wen1,2, JIANG Luyao1,2, HUANG Weijiu1,2, GUO Fei1,2, DONG Haipeng1,2
1 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China;
2 Chongqing Key Laboratory of Mold Technology, Chongqing University of Technology, Chongqing 400054, China
下载:  全 文 ( PDF ) ( 14347KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 LZ91双相镁锂合金可通过搅拌摩擦加工方式实现组织细化及双相均匀化,搅拌摩擦加工中材料前进侧和后退侧流动性差异使两侧组织特征区别较大,力学性能不稳定。本研究采用光学显微镜(OM)、场发射扫描电子显微镜(SEM)、万能拉伸试验机,研究了退火处理对搅拌摩擦加工LZ91双相镁锂合金搅拌区微观组织及力学性能的影响。结果表明,不同特征的初始变形组织在热处理过程中的组织演变规律不同,双相分布均匀的细晶结构在热处理中稳定长大,前进侧与基体组织突变得到改善,逐渐由弱织构形成c-轴平行于PD方向的基面织构。后退侧团聚成岛状的α细晶在热处理中迅速长大,热稳定性较差。250 ℃下退火处理30 min后,搅拌摩擦加工LZ91镁锂合金均匀伸长率从5.8%提升至8.8%,拉伸中前进侧收缩率从0.2降低至0.1,应力集中得到有效改善,性能薄弱区域在退火处理前后均为后退侧组织。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
江雯
蒋璐瑶
黄伟九
郭非
董海澎
关键词:  LZ91镁锂合金  搅拌摩擦加工  显微组织  力学性能  退火处理    
Abstract: Grains and phases in LZ91 dual-phase Mg-Li alloy could be refined and homogenized by friction stir processing (FSP). The effects of annealing treatment on the microstructure and mechanical properties of LZ91 dual-phase Mg-Li alloy processed by friction stirring were studied by optical microscopy (OM), scanning electron microscopy (SEM) and uniaxial tensile test. The results showed that initial microstructure characte-ristics affected organizational evolution. Uniform and small dual-phases could grow smoothly during heat treatment. Drastic organizational interface between stir zone and matrix was weakened during annealing treatment. Texture of fine grains in advancing side were increased slowly. Fine grains in α-islands grew fast in retreating side of samples. Uniform elongation of FSPed LZ91 increased from 5.8% to 8.8% after annealing treatment at 250 ℃ for 30 min. Stress concentration was improved in advancing side of samples. Reduction of area decreased from 0.2 to 0.1. The stress concentration was improved effectively, and the weak area was retrograde before and after annealing treatment.
Key words:  LZ91 magnesium-lithium alloy    friction stir processing    microstructure    mechanical property    annealing treatment
                    发布日期:  2020-07-01
ZTFLH:  TG146.2  
基金资助: 重庆市自然科学基金(cstc2018jcyjAX0107;cstc2019jcyj-msxmX0111);中国博士后基金(2018M643407);重庆理工大学科研启动基金
作者简介:  江雯,重庆理工大学硕士研究生,主要从事镁锂合金搅拌摩擦加工变形机理及耐腐蚀性能研究等工作;蒋璐瑶,重庆大学博士(后),讲师。2017年于重庆大学镁合金工程技术研究中心获博士学位,从事低成本高性能新型镁合金合金设计及开发,镁合金剧烈塑性变形机理研究。研究成果在国内外期刊如Materials Science and Engineering AJournal of Alloys and Compounds发表论文10余篇。作为项目负责人主持中国博士后面上项目、重庆市基础研究与前沿探索项目等4项。
引用本文:    
江雯, 蒋璐瑶, 黄伟九, 郭非, 董海澎. 退火处理对搅拌摩擦加工LZ91双相镁锂合金微观组织及力学性能的影响[J]. 材料导报, 2020, 34(Z1): 307-311.
JIANG Wen, JIANG Luyao, HUANG Weijiu, GUO Fei, DONG Haipeng. Effect of Annealing Treatment on Microstructure and Mechanical Properties ofLZ91 Dual-Phase Magnesium-Lithium Alloy Processed by Friction Stir Processing. Materials Reports, 2020, 34(Z1): 307-311.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/307
1 李瑞红,高占勇,徐浩杰,等.热加工工艺,2019,48(14),27.
2 曹富荣,夏飞.中国材料进展,2019,38(2),187.
3 张婧,封小松,张成聪,等.焊接学报,2017(4),119.
4 Agnew S R, Yoo M H, Tomé C N. Acta Materialia,2001,49(20),4277.
5 Qian X Y, Zeng Y, Jiang B, et al. Materials Science and Engineering: A,2019,742,241.
6 Lentz M, Klaus M, Beyerlein I J, et al. Acta Materialia,2015,86,254.
7 Alizadeh R, Mahmudi R, Pereira P H R, et al. Materials Science and Engineering: A,2016,682,577.
8 Valiev R Z, Alexandrov I V, Zhu Y T, et al. Journal of Materials Research,2002,17(1),5.
9 Xue P, Li W D, Wang D, et al. Materials Science and Engineering: A,2016,670,153.
10 Yang C W, Chen Y W. Procedia Engineering,2014,75,88.
11 Liu G, Ma Z D, Wei GB, et al. Journal of Materials Processing Technology,2019,267,393.
12 Liu F C, Tan M J, Liao J, et al. Journal of Materials Science,2013,48(24),8539.
13 Cao F R, Xue G Q, Zhou B J, et al. Metals and Materials International,2019,25(3),570.
14 李廷刚.超轻Mg-9Li-2Zn合金轧制工艺与组织性能研究.硕士学位论文,东北大学,2008.
15 Mishra M K, Rao A G, Balasundar I, et al. Materials Science and Engineering: A,2018,719,82.
16 Morisada Y, Fujii H, Nagaoka T, et al. Composites Part A,2007,38(10),2097.
17 Xin R L, Zheng X, et al. Journal of Alloys & Compounds,2016,659,51.
18 林君.搅拌摩擦加工ZK60镁合金的组织及性能研究.硕士学位论文,华南理工大学,2017.
19 Guo F, Jiang L Y, Ma Y L, et al. Scripta Materialia,2020,179,16.
[1] 吕展衡, 陈品鸿, 许冰, 罗颖, 周武艺, 董先明. 巯基-双键点击反应制备光固化红光转光膜及其性能[J]. 材料导报, 2020, 34(Z1): 111-115.
[2] 王枭, 郭伟, 胡月阳, 陈芹, 仇佳琳, 李正阳, 陈佳彬, 管荣成. 硫硅酸钙的合成及水化性能的研究[J]. 材料导报, 2020, 34(Z1): 169-172.
[3] 吴昊宇, 吴培红, 卞立波, 陶志. 纤维珠链在混凝土抗裂性能设计中的应用研究[J]. 材料导报, 2020, 34(Z1): 193-198.
[4] 李文杰, 陈宜虎, 范理云, 吕海波. 钙质砂水泥砂浆力学性能试验研究及微观结构分析[J]. 材料导报, 2020, 34(Z1): 224-228.
[5] 宋文杰, 刘洁, 董会萍, 张光, 王彤. 超轻镁锂合金熔炼工艺研究[J]. 材料导报, 2020, 34(Z1): 316-321.
[6] 黄同瑊, 晁代义, 宋晓霖, 张伟, 王志雄, 张华, 吕正风. 热轧工艺对Al-Cu-Mg合金组织及性能的影响[J]. 材料导报, 2020, 34(Z1): 322-324.
[7] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[8] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[9] 汪知文, 李碧雄. 稻壳灰应用于水泥混凝土的研究进展[J]. 材料导报, 2020, 34(9): 9003-9011.
[10] 徐翔宇, 郑勇, 吴昊, 丁青军, 王丽珠, 欧阳杰. 无磁金属陶瓷的研究进展[J]. 材料导报, 2020, 34(9): 9064-9068.
[11] 李世磊, 胡平, 段毅, 左烨盖, 邢海瑞, 李辉, 邓洁, 冯鹏发, 王快社, 胡卜亮. 掺杂方式对钼合金组织与力学性能影响的研究进展[J]. 材料导报, 2020, 34(9): 9132-9142.
[12] 靳贺松, 李福海, 何肖云峰, 王江山, 胡丁涵, 胡志明. 聚丙烯纤维水泥基复合材料的抗冻性能研究[J]. 材料导报, 2020, 34(8): 8071-8076.
[13] 陶继闯, 卢一平. Mo含量对Al0.1CoCrCu0.5FeNiMox高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8096-8099.
[14] 徐道芬, 陈康华, 胡桂云, 陈送义. 微量稀土Ce对Al-Zn-Mg铝合金组织和腐蚀性能的影响[J]. 材料导报, 2020, 34(8): 8100-8105.
[15] 谢锐, 吕铮, 卢晨阳, 王晴, 徐世海, 刘春明. 热等静压温度对14Cr-ODS钢显微组织及力学性能的影响[J]. 材料导报, 2020, 34(8): 8141-8148.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed