Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 304-306    
  金属与金属基复合材料 |
93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究
甘杰, 何林, 李强, 杨晓峰, 范辉
中国工程物理研究院材料研究所,绵阳 621907
The Research of Key Factors for Impact Toughness of 93W-5Ni-2Fe Alloys
GAN Jie, HE Lin, LI Qiang, YANG Xiaofeng, FAN Hui
Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
下载:  全 文 ( PDF ) ( 4863KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用真空烧结技术制备了93W-5Ni-2Fe合金,研究了杂质元素、内部缺陷及表面加工应力对钨合金冲击韧性的影响。结果表明:杂质元素氧与钨、铁、镍等发生氧化反应,生成氧化钨和其他氧化物夹杂,破坏母体的连续性,导致钨合金性能的恶化;随着氧杂质元素含量的降低,钨合金冲击韧性得到大幅改善;过高的升温速率,容易在烧结坯内部产生大量的气孔等内部缺陷,严重影响其冲击韧性,采用较低的升温速度(3 ℃/min),有利于减少试样中气孔等内部缺陷的产生,改善试样的冲击韧性;真空热处理能够很好地消除试样表面的加工应力,提高材料的冲击韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
甘杰
何林
李强
杨晓峰
范辉
关键词:  钨合金  冲击韧性  氧含量  内部缺陷  真空热处理  表面应力    
Abstract: 93W-5Ni-2Fe alloys were prepared by vacuum sintering. The effects of impurities, defects and surface stress on impact toughness were stu-died. The results showed impurities of tungsten oxide and other oxides resulting from reactions between oxygen and tungsten, iron, nickel and etc deteriorated the properties of tungsten alloys significantly. With a decreasing content of oxygen, the impact toughness of tungsten alloys could be improved considerably. By using a heating rate of 3 ℃/min, few pores and defects were formed in alloys, which showed a good impact toughness. Whereas, by using exorbitant heating rate, a large amount of pores and defects were formed. Vacuum annealing could eliminate the surface stress of tungsten alloys effectively, resulting in an improve impact toughness.
Key words:  tungsten alloy    impact toughness    oxygen    defect    vacuum annealing    surface stress
                    发布日期:  2020-07-01
ZTFLH:  TG146.4  
作者简介:  甘杰,中国工程物理研究院材料研究所职工,2006年毕业于湖南冶金学院金属材料专业,2013年取得中国石油大学材料物理专业本科学历,从2006年工作至今,一直从事金属材料粉末冶金制品的生产、研究等方面的工作。
引用本文:    
甘杰, 何林, 李强, 杨晓峰, 范辉. 93W-5Ni-2Fe高密度钨合金冲击韧性关键影响因素研究[J]. 材料导报, 2020, 34(Z1): 304-306.
GAN Jie, HE Lin, LI Qiang, YANG Xiaofeng, FAN Hui. The Research of Key Factors for Impact Toughness of 93W-5Ni-2Fe Alloys. Materials Reports, 2020, 34(Z1): 304-306.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/304
1 Islam S H. Rare Metals,2011,30(4),392.
2 Yu Y, Wang E D. Transactions of Nonferrous Metals Society of China,2004,14(5),912.
3 Luo S D, Tang X W, Yi J H. Transactions of Nonferrous Metals Society of China,2004,14(2),241.
4 袁亚楠,胡健,王少龙,等.四川兵工学报,2011,32(7),10.
5 王松,陈宏燕,胡洁琼,等.贵金属,2011,32(3),85.
6 王猛,黄德武,曲家惠,等.塑性工程学报,2012,19(2),102.
7 楼建锋,王政,洪滔,等.高压物理学报,2009,23(1),65.
8 胡兴军.稀有金属与硬质合金,2009,37(3),65.
9 刘国辉,王玲,刘桂荣,等.粉末冶金技术,2013,31(1),40.
10 王季林.粉末冶金工业,2009,19(2),16.
11 刘桂荣,王玲,周武平,等.粉末冶金材料科学与工程,2009,14(5),295.
12 高兆祖,康志君,郑强.稀有金属,1999,23(2),81.
13 高明,马颖澈,孙晓峰.材料研究学报,2001,13,275.
14 齐云馨,赵彤,王改莲,等.兵器材料科学与工程,1999,22(1),3.
15 黄晨光,董永香,段祝平,等.力学进展,2003,33(4),433.
16 侯艳荣,赖运金,杜予晅,等.材料热处理技术,2011,40(2),182.
[1] 谢斌, 杨硕, 王伟宁, 郗雨林. ITO靶材第二相In4Sn3O12的结构及其对靶材性能的影响[J]. 材料导报, 2020, 34(Z1): 29-33.
[2] 王婷玥, 邢书明, 敖晓辉, 王营. 压力对挤压铸造E级钢低温冲击韧性的影响[J]. 材料导报, 2020, 34(6): 6138-6143.
[3] 苏小虎, 栗卓新, 马思鸣, 李红, 张天理, KIM Hee Jin. 氧含量及夹杂物对高强钢金属芯焊丝E120C-K4熔敷金属冲击韧性的影响[J]. 材料导报, 2020, 34(11): 11049-11052.
[4] 张哲轩, 周再峰, 山泉, 李祖来, 蒋业华, 张飞. 表面钨合金化对高铬铸铁组织和硬度的影响[J]. 材料导报, 2019, 33(z1): 362-365.
[5] 张建斌, 刘帆, 薛飞. 热处理工艺对P91耐热钢中δ-铁素体和冲击性能的影响[J]. 《材料导报》期刊社, 2018, 32(8): 1318-1322.
[6] 张忠科, 张剑飞, 于洋, 王希靖. 厚板铝合金搅拌摩擦焊接头的冲击性能[J]. 材料导报, 2018, 32(22): 3936-3940.
[7] 张昊, 胡强, 张少明, 盛艳伟, 赵新明, 贺会军. 水雾化法制备FeSiCr软磁合金粉末研究[J]. 材料导报, 2018, 32(20): 3590-3594.
[8] 傅定发,冷宇,高文理. 微合金元素Nb对低碳铸钢强度和冲击韧性的影响[J]. 《材料导报》期刊社, 2018, 32(2): 237-242.
[9] 兰宇, 李兵, 周子皓, 张以纯, 尹传强, 魏秀琴, 周浪. 表面氧含量对高纯硅粉高温氮化行为的影响[J]. 材料导报, 2018, 32(16): 2719-2722.
[10] 郭林凯, 王 磊, 章 青. 纳米多孔金属力学性能的若干研究进展[J]. 材料导报, 2017, 31(1): 97-102.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed