Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 97-102    https://doi.org/10.11896/j.issn.1005-023X.2017.01.013
  材料综述 |
纳米多孔金属力学性能的若干研究进展
郭林凯,王 磊,章 青
河海大学力学与材料学院,南京 211100
Some Research Developments on Mechanical Property of Nanoporous Metals
GUO Linkai, WANG Lei, ZHANG Qing
College of Mechanics and Materials, Hohai University, Nanjing 211100
下载:  全 文 ( PDF ) ( 1546KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米多孔金属是近年来发展起来的一类具有纳米级双连续孔洞和高表面积的新型功能材料,具备如化学性能、力学性能、表面拉曼散射性能等多方面的优异特性,在催化、传感、新能源、生物医学等诸多领域拥有广阔的应用前景。围绕纳米多孔金属的制备、力学性能和尺度特性等,展开细述了相关的研究工作,并重点针对力学性能方面的研究进展,如尺度方程、破坏机理、表面效应和表面应力,以及脱合金制备方法和制备过程中的力学问题进行了讨论,并对将来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭林凯
王 磊
章 青
关键词:  纳米多孔金属  力学性能  脱合金  尺度方程  表面应力    
Abstract: In recent years, due to their superior chemical, mechanical and surface Raman scattering property, nanoporous metals, which are new types of functional materials with ultrahigh specific surface area and bi-continuous network at nano-scale, have been widely used in many fields such as catalysis, sensing, new energy and bio-medical engineering. In this paper, detailed review is carried out on some research works related to preparation, mechanical property and scale-sensitive performance of nanoporous metals, with an emphasis on scaling law, failure mechanism, surface effects and dealloying process, and some future directions are also prospected.
Key words:  nanoporous metals    mechanical properties    dealloying    scaling equations    surface stress
               出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  TP273  
基金资助: 国家自然科学基金(11472098);教育部“新世纪优秀人才”支持计划(NCET-13-0773)
作者简介:  郭林凯:男,1992年生,硕士研究生,主要研究方向为纳米多孔金属的力学性能 E-mail:glkarthur@163.com 王磊:通讯作者,男,1980年生,博士,副教授,主要研究方向为微纳米力学与计算力学 E-mail:wangL@hhu.edu.cn
引用本文:    
郭林凯, 王 磊, 章 青. 纳米多孔金属力学性能的若干研究进展[J]. 材料导报, 2017, 31(1): 97-102.
GUO Linkai, WANG Lei, ZHANG Qing. Some Research Developments on Mechanical Property of Nanoporous Metals. Materials Reports, 2017, 31(1): 97-102.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.013  或          http://www.mater-rep.com/CN/Y2017/V31/I1/97
1 Ding Y, Kim Y J, Erlebacher J. Nanoporous gold leaf: “Ancient Technology”/advanced material[J]. Adv Mater,2004,16(21):1897.
2 Dixon M C, Daniel T A, Hieda M, et al. Preparation, structure, and optical properties of nanoporous gold thin films [J]. Langmuir, 2007,23(5):2414.
3 Erlrbacher J, Seshadri R. Hard materials with tunable porosity[J]. MRE Bull,2009,34(8):561.
4 Vaseashta A, Dimova-Malinovska D. Nanostructured and nanoscale devices, sensors and detectors[J]. J Optoelectronics Adv Mater,2016,6(3-4):312.
5 Wittstock A, Biener J, Bumer M. Nanoporous gold: A new material for catalytic and sensor applications[J]. Phys Chem Chem Phys,2010,12(40):12919.
6 Kramer D, Vidwanath R N, Weissmuller J. Surface-stress induced macroscopic bending of nanoporous gold cantilevers[J]. Nano Lett,2004.4(5):793.
7 Biener J, Wittstock A, Zepeda-Ruiz L A, et al. Surface-chemistry-driven actuation in nanoporous gold[J]. Nature Mater,2009,8(1):47.
8 Jin H J, Wang X L, Parida S, et al. Nanoporous Au-Pt alloys as large strain electronchemical actuators[J]. Nano Lett,2010,10(1):187.
9 Chen X, Si C, Wang Y, et al. Multicomponent platinum-free nano-porous Pd-based alloy as an active and methanol-tolerant electrocatalyst for the oxygen reduction reaction[J]. Nano Res,2016,9(6):1.
10 Qiao Y, Li C M. Nanostructured catalysts in fuel cells[J]. J Mater Chem,2011,21(12):4027.
11 Wittstock A, Zielasek V, Biener J, et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling coupling of methanol at low temperature[J]. Science,2010,327(5963):319.
12 Xu C, Su J, Xu X, et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc,2007,129(1):42.
13 Kucheyev S O, Hayes J R, Biener J, et al. Surface-enhanced Raman scattering on nanoporous Au[J]. Appl Phys Lett,2006,89(5):053102.
14 Qian L H, Yan X Q, Fujita T, et al. Surface enhanced Raman scattering of nanoporous gold: Smaller pore sizes stronger enhancements[J]. Appl Phys Lett,2007,90(15):153120.
15 Schade L, Franzka S, Biener M, et al. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold[J]. Appl Surf Sci,2016,374:19.
16 Volkmar Z, Birte J, Christian S, et al. Gold catalysts: Nanoporous gold foams[J]. Angew Chem,2006,45(48):8241.
17 Fujita T, Okada H, Koyama K, et al. Unusually small electrical resistance of three-dimensional nanoporous gold in external magnetic fields[J]. Phys Rev Lett,2008,101(16):3958.
18 Zhang L, Chang H, Hirata A, et al. Nanoporous gold based optical sensor for sub-ppt detection of mercury ions[J]. Acs Nano,2013,7(5):4595.
19 Sieradzki K, Rinaldi A, Friesen C, et al. Length scales in crystal plasticity[J]. Acta Mater,2006,54(17):4533.
20 Liu Z, Searson P C. Single nanoporous gold nanowire sensors[J]. J Phys Chem B,2006,110(9):4318.
21 Shin T Y, Yoo S H, Park S. Gold nanotubes with a nanoporous wall: Their ultrathin platinum coating and superior electrocatalytic activity toward methanol oxidation[J]. Chem Mater,2012,20(17):5682.
22 Cheng F, Bandaru N M, Ellis A V, et al. Electrochemical fabrication of nanoporous gold[J]. J Mater Chem,2012,22(7):3952.
23 Arzt E, Dehm G, Gumbsch P, et al. Interface controlled plasticity in metals: Dispersion hardening and thin film deformation[J]. Prog Mater Sci,2001,46(3-4):283.
24 Parida S, Kramer D, Volkert C A, et al. Volume change during the formation of nanoporous gold by dealloying[J]. Phys Rev Lett,2006,97(3):035504.
25 Biener J, Hodge A M, Hamza A V. Microscopic failure behavior of nanoporous gold[J]. Appl Phys Lett,2005,87(12):121908.
26 Biener J, Hodge A M, Hayes J R, et al. Size effects on the mechanical dehavior of nanoporous Au[J]. Nano Lett,2006,6(10):2379.
27 Parthasarathi A, Polan N W. Stress corrosion of Cu-Zn and Cu-Zn-Ni: The role of delloying[J]. Metall Mater Trans A,1982,13(11):2027.
28 Pickering H W, Swann P R. Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking[J]. Corrosion,1963,19(11):373.
29 Forty A J. Corrosion micromorphology of noble metal alloys and depletion gilding[J]. Nature,1979,282(5739):597.
30 Erlebacher J, Aziz M J, Karma A, et al. Evolution of nanoporosity in delloying[J]. Nature,2001,410(6827):450.
31 Swann P R. Mechanism of corrosion tunneling with special reference to Cu3Au[J]. Corrosion,1969,25(4):147.
32 Sieradzki K, Newman R C. Micro- and nano-porous merallic structures: USA, 338260-7[P].1990.
33 Opprnheim I C, Trevor D J, Chidsey C E, et al. In situ scanning tunneling microscopy of corrosion of silver-gold alloys[J]. Science,1991,254(5032):687.
34 Ding Y, Erlebacher J. Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc,2003,125(26):7772.
35 Ding Y, Chen M, Erlebacher J. Metallic mesoporous nanocompo-sites for electrocatalysis[J]. J Am Chem Soc,2004,126(22):6876.
36 Jin H J, Weissmüller J. A material with electrically tunable strength and flow stress[J]. Science,2011,332(6034):1179.
37 Lee D, Wei X, Chen X, et al. Microfabrication and mechanical pro-perties of nanoporous gold at the nanoscale[J]. Scripta Mater,2007,56(5):437.
38 Sun Y, Kucera K P, Burger S A, et al. Microstructure, stability and thermomenchanical behavior of crack-free thin films of nanoporous gold[J]. Scripta Mater,2008,58(11):1018.
39 Zhu J, Seker E, Bart-Smith H, et al. Mitigation of tensile failure in released nanoporous metal micro structures via thermal treatment[J]. Appl Phys Lett,2006,89(13):4773.
40 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of annealing prior to dealloying on the mechanical properties of nanoporous gold microbeams[J]. Acta Mater,2008,56(3):324.
41 Seker E, Gaskins J T, Bart-Smith H, et al. The effects of post-fabrication annealing on the mechanical properties of freestanding nanoporous gold structures[J]. Acta Mater,2007,55(14):4593.
42 Haque M A, Saif M T. Deformation mechanisms in free-standing nanoscale thin films: A quantitative in situ transmission electron microscope study[J]. Proceedings of the National Academy of Sciences,2004,101(17):6335.
43 Feng X Q, Li J Y, Yu S W. A simple method for calculating interaction of numerous microcracks andits applications[J]. Int J Solids Structures,2003,40(2):447.
44 Hakamada M, Mabuchi M. Mechanical strength of nanoporous gold fabricated by dealloying[J]. Scripta Mater,2007,56(11):1003.
45 Hieda M, Garcia R, Dixon M, et al. Ultrasensitive quartz crystal microbalance with porous gold electrodes[J]. Appl Phys Lett,2004,84(4):628.
46 Lührs L, Soyarslan C, Markmann J, et al. Elastic and plastic Poisson′s ratios of nanoporous gold[J]. Scripta Mater,2016,110:65.
47 Biener J, Hamza A V, Hodge A M. Deformation behavior of nano-porous metals[C]// Micro and Nano Mechanical Testing of Materials and Devices. USA:Springer Science+Business Media,2008:11.
48 Hodge A M, Doucette R T, Biener M M, et al. Ag effects on the elastic modulus value of nanoporous Au foams[J]. J Mater Res,2009,24(4):1600.
49 Biener J, Hodge A M, Hamza A V, et al. Nanoporous Au: A high yield strength material[J]. J Appl Phys,2005,97(2):024301.
50 Yuan F, Wu X. Scaling laws and deformation mechanisms of nano-porous copper under adiabatic uniaxial strain compression[J]. Aip Adv,2014,4(12):312.
51 Ng B N D, Stukowski A, Mameka N, et al. Anomalous compliance and early yielding of nanoporous gold[J]. Acta Mater,2015,93:144.
52 Lee D, Wei X, Zhao M, et al. Plastic deformation in nanoscale gold single crystals and open-celled nanoporous gold[J]. Modelling Simulation Mater Sci Eng,2006,15(1):181.
53 Gupta G, Thorp J C, Mara N A, et al. Morphology and porosity of nanoporous Au thin films formed by dealloying of AuxSi1-x[J]. J Appl Phys,2012,112(9):094320.
54 Li R, Sieradzki K. Ductile-brittle transition in random Au[J]. Phys Rev Lett,1992,68(8):1168.
55 Hodge A M, Biener J, Hayes J R, et al. Scaling equation for yield strength of nanoporous open-cell foams[J]. Acta Mater,2007,55(4):1343.
56 Farkas D, Caro A, Bringa E, et al. Mechanical response of nanoporous gold[J]. Acta Mater,2013,61(9):3249.
57 Jin H J, Kumanaeva L, Schmauch J, et al. Deforming nanoporous metal: Role of lattice coherency[J]. Acta Mater,2009,57(9):2665.
58 Briot N J, Kennerknecht T. Mechanical properties of bulk single crystalline nanoporous gold investigated by millimeter-scale tension and compression testing[J]. Philosophical Magazine,2014,94(8):847.
59 Liu R, Antoniou A. A relationship between the geometrical structure of a nanoporous metal foam and its modulus[J]. Acta Mater,2013,61(7):2390.
60 Gibson L J, Ashby M F. Cellular solid: Structure and properties[M]. England: Cambridge University Press, 1999:27.
61 Wu T Y, Wang X, Huang J C, et al. Characterization and functional applications of nanoporous Ag foams prepared by chemical dealloying[J]. Metall Mater Trans B,2015,46(5):1.
62 Volkert C A, Lilleodden E T, et al. Approaching the theoretical in nanoporous Au[J]. Appl Phys Lett,2006,89(6):061920.
63 Weissmüller J, Newman R C, Jin H J. Nanoporous metals by alloy corrosion: Formation and mechanical properties[J]. MRS Bull,2009,34(8):577.
64 Huber N, Viswanath R N, et al. Scaling laws of nano-porous metals under uniaxial compression[J]. Acta Mater,2014,67(4):252.
65 Kahng B, Batrouni G G, Redner S, et al. Electrical breakdown in a fuse network with random, continuously distributed breaking strengths[J]. Phys Rev B Condensed Matter,1988,37(13):7625.
66 Mccullough K Y G, Fleck N A, Ashby M F. Uniaxial stress-strain behavior of aluminum alloy foams[J]. Acta Mater,1999,47(8):2323.
67 Amsterdam E, Onck P R, et al. Fracture and microstructure of open cell aluminum foam[J]. J Mater Sci,2005,40(22):5813.
68 Weissmüller J, Viswanath R N, Kramer D, et al. Charge-induced reversible strain in a metal[J]. Science, 2003, 300(5617):312.
69 Viswanath R N, Kramer D, Weissmüller J. Adsorbate effects on the surface stress-charge response of platinum electrodes[J]. Electrochimica Acta,2008,53(6):2757.
70 Cheng C, Ngan A H W. Charge-induced reversible bending in anodic porous alumina-aluminum composites[J]. Appl Phys Lett,2013,102(21):213119.
71 Ebron V H, Yang Z W, Seyer D J, et al. Fuel-powered artificial muscles[J]. Science,2006,311(5767):1580.
72 Zhang J, Bai Q, Zhang Z. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance[J]. Nanoscale,2016,8(13):7287.
73 Bai Q, Si C, Zhang J, et al. Sign inversion of surface stress-charge response of bulk nanoporous nickel actuators with different surface states[J]. Phys Chem Chem Phys,2016,18(29):19798.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 张长亮, 卢一平. 氮元素对Ti2ZrHfV0.5Mo0.2高熵合金组织及力学性能的影响[J]. 材料导报, 2019, 33(z1): 329-331.
[3] 晁代义, 徐仁根, 孙有政, 赵巍, 吕正风, 程仁策, 邵文柱. 850 ℃时效处理对2205双相不锈钢组织与力学性能的影响[J]. 材料导报, 2019, 33(z1): 369-372.
[4] 任秀秀, 朱一举, 赵省向, 韩仲熙, 姚李娜. 四种含能晶体微观力学性能与摩擦性能的关系[J]. 材料导报, 2019, 33(z1): 448-452.
[5] 薛晓武, 王新闻, 刘红波, 卿宁. 水性聚碳酸酯型聚氨酯的制备及性能[J]. 材料导报, 2019, 33(z1): 488-490.
[6] 杨康, 赵为平, 赵立杰, 梁宇, 薛继佳, 梅莉. 固化湿度对复合材料层合板力学性能的影响与分析[J]. 材料导报, 2019, 33(z1): 223-224.
[7] 平学龙, 符寒光, 孙淑婷. 激光熔覆制备硬质颗粒增强镍基合金复合涂层的研究进展[J]. 材料导报, 2019, 33(9): 1535-1540.
[8] 薛翠真, 申爱琴, 郭寅川. 基于孔结构参数的掺CWCPM混凝土抗压强度预测模型的建立[J]. 材料导报, 2019, 33(8): 1348-1353.
[9] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[10] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[11] 郭丽萍, 谌正凯, 陈波, 杨亚男. 生态型高延性水泥基复合材料的可适性设计理论与可靠性验证Ⅰ:可适性设计理论[J]. 材料导报, 2019, 33(5): 744-749.
[12] 赵立臣, 谢宇, 张喆, 王铁宝, 王新, 崔春翔. ZnO纳米棒/多孔锌泡沫的制备及其压缩和抗菌性能[J]. 材料导报, 2019, 33(4): 577-581.
[13] 何秀兰, 杜闫, 巩庆东, 郑威, 柳军旺. 凝胶-发泡法制备多孔Al2O3陶瓷及其力学性能[J]. 材料导报, 2019, 33(4): 607-610.
[14] 董天顺, 郑晓东, 李国禄, 王海斗, 周秀锴, 李亚龙. 大气等离子喷涂Fe基涂层及其氩弧重熔层的组织与力学性能[J]. 材料导报, 2019, 33(4): 678-683.
[15] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed