Please wait a minute...
材料导报  2020, Vol. 34 Issue (Z1): 271-276    
  无机非金属及其复合材料 |
水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响
苏岳威, 张宁, 吕宪俊, 王俊祥
山东科技大学化学与生物工程学院,青岛 266590
Effects of Water Glass Modulus on the Hydration Properties and Kinetics ofSlag-based Cementitious Materials
SU Yuewei, ZHANG Ning, LYU Xianjun, WANG Junxiang
College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China
下载:  全 文 ( PDF ) ( 4209KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步明确水玻璃在矿渣基胶凝材料(SCM)水化过程中的作用机制,借助力学性能测试、X射线衍射和热重分析考察了水玻璃模数对SCM抗压强度和水化产物的影响。同时,采用等温量热法和Krstulovic-Dabic动力学模型,讨论了SCM结晶成核与晶体生长(NG)、相边界反应(I)和扩散(D)过程的水化动力学参数与水玻璃模数之间的相关性。结果表明,在水玻璃模数为0.7~2.5范围内,SCM的主要水化产物均为水化硅(铝)酸钙凝胶,其生成量随水玻璃模数的增加逐渐降低。低水玻璃模数(Ms=0.7)条件下,大量低聚合度硅(铝)酸钙凝胶的生成造成了SCM抗压强度的降低。动力学研究表明,SCM的水化过程符合Krstulovic-Dabic动力学模型,控制历程均表现为NG→I→D。水玻璃模数对SCM水化过程的作用机制在于对各阶段反应速率常数的影响,NG、I和D过程的反应速率常数均随水玻璃模数的增加逐渐降低,导致了SCM水化反应速率下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
苏岳威
张宁
吕宪俊
王俊祥
关键词:  高炉矿渣  水玻璃模数  水化特性  动力学  水化机理    
Abstract: To improve the action mechanism of water glass on the hydration of slag-based cementitious materials (SCM), the influence of water glass modulus on the compressive strength and the hydration products of SCM was investigated by means of mechanical test, X-ray diffraction and thermogravimetric analyses. Meanwhile, the correlations between the kinetic parameters of crystallization nucleation and crystal growth (NG), phase boundary reaction (I) and diffusion (D) process of SCM and the water glass modulus were discussed using isothermal calorimetry and the Krstulovic-Dabic kinetic model. The results showed that the main hydration products of SCM were calcium (aluminum) silicate hydrate gels. The amount of hydration products decreased with the increase of water glass modulus in the range of 0.7—2.5. Under the condition of low water glass modulus (Ms=0.7), the formation of a large amounts of calcium (aluminum) silicate hydrate gels with low polymerization degree resulted in the reduction in compressive strength. Kinetic studies indicated that the hydration process of SCM conformed to the Krstulovic-Dabic kinetic model that the control process was shown as NG→I→D. The action mechanism of water glass modulus on the hydration of SCM lies in its effect on the reaction rate constants of NG, I and D processes, which decreased with the increase of water glass modulus, leading to the reduction in hydration reaction rate of SCM.
Key words:  blast furnace slag    water glass modulus    hydration properties    kinetics    hydration mechanism
                    发布日期:  2020-07-01
ZTFLH:  X75  
基金资助: 国家自然科学基金面上项目(51674161);山东省自然科学基金(ZR2019BEE075);山东科技大学人才引进科研启动基金项目(2019RCJJ007)
作者简介:  苏岳威,山东科技大学矿物加工工程硕士研究生,2018年在山东科技大学取得矿物加工工程学士学位后,继续留校读研。主要研究方向为碱激发胶凝材料基海砂混凝土的制备及性能研究和矿物资源综合利用;王俊祥,山东科技大学讲师,硕士研究生导师。2017年在山东科技大学取得矿物加工工程博士学位后留校工作。主要研究方向包括:碱激发胶凝材料的制备及水化机理研究、微细粒尾矿膏体浓缩及胶结充填、环保型金属表面处理剂的制备及机理研究以及矿物资源综合利用等,在国内外学术期刊发表论文十余篇,其中第一作者SCI论文3篇,申请国家发明专利3项,其中授权1项。目前,主持承担山东省自然科学基金1项(ZR2019BEE075,2019/07-2022/06),山东科技大学人才引进科研启动基金1项(2019RCJJ007,2019/06-2021/06);作为主要人员参与国家自然科学基金1项(51674161,2017/01-2020/12),横向科研项目5项,获得中国钢铁工业协会/中国金属学会冶金科学技术奖一等奖1项(位6,2019)。
引用本文:    
苏岳威, 张宁, 吕宪俊, 王俊祥. 水玻璃模数对矿渣基胶凝材料水化特性及动力学的影响[J]. 材料导报, 2020, 34(Z1): 271-276.
SU Yuewei, ZHANG Ning, LYU Xianjun, WANG Junxiang. Effects of Water Glass Modulus on the Hydration Properties and Kinetics ofSlag-based Cementitious Materials. Materials Reports, 2020, 34(Z1): 271-276.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2020/V34/IZ1/271
1 Thomanetz E. Waste Management Research,2012,30(4),404.
2 吴中伟,陶有生.硅酸盐学报,1999,6(1),734.
3 Cabeza L F, Barreneche C, Miró L, et al. Renewable and Sustainable Energy Reviews,2013,23,536.
4 高海浪,蒋林华,喻骁,等.混凝土,2015,8(1), 49.
5 Palomo A, Palacios M. Cement and Concrete Research,2003,33(2),289.
6 刘诚斌,纪洪广,刘娟红,等.建筑材料学报,2015,18(1),82.
7 赵世冉,张凯峰,焦国锋,等.硅酸盐通报,2015,34(s1),316.
8 Puertas F, Palacios M, Gil-Maroto A, et al. Cement and Concrete Composites,2009,31(5),277.
9 Samad S, Shah A, Limbachiya M C. Sādhanā,2017,42(7),1.
10 刘庆,臧浩宇,吴蓬,等.硅酸盐通报,2019(2),38.
11 刘仍光,阎培渝.硅酸盐学报,2012(8),38.
12 赵学庄,罗渝然.化学反应动力学原理(下册),高等教育出版社,1990.
13 Hu J, Ge Z, Wang K. Construction and Building Materials,2014,50(1),657.
14 Bergold S T, Goetz-Neunhoeffer F, Neubauer J. Cement and Concrete Research,2016,88,73.
15 Ruža K, Pero D. Cement and Concrete Research,2000,30(5),693.
16 阎培渝,郑峰.硅酸盐学报,2006,34(5),555.
17 韩方晖,王栋民,阎培渝.硅酸盐学报,2014,42(5),613.
18 张武龙,杨长辉,杨凯,等.建筑材料学报,2015,19(5),803.
19 程臻赟,傅博,韩静云.科学技术与工程,2018,18(30),233.
20 苏英,卢敏,贺行洋,等.混凝土,2019(8),104.
21 Gebregziabiher B S, Thomas R, Peethamparan S. Cement and Concrete Composites,2015,55,91.
22 何娟,杨长辉.土木建筑与环境工程,2011,26(3),151.
23 贾屹海,韩敏芳,孟宪娴,等.硅酸盐通报,2009,28(5),37.
24 Aydin S, Baradan B. Composites Part B Engineering,2014,57(1),166.
25 Wang J X, Lyu X J, Wang L Y, et al. Journal of Cleaner Production,2018,171,622.
26 曾路,何牟,张明华,等.材料导报:研究篇,2019,33(12),4086.
27 崔潮,彭晖,刘扬,等.建筑材料学报,2017,20(4),535.
28 Pane I, Hansen W. Cement and Concrete Research,2005,35(6),1155.
29 闫培渝,韩方晖.硅酸盐学报,2015,43(10),1331.
30 郑登登,季韬,王国杰.水利与建筑工程学报,2019(5),102.
31 王亚丽,姚羽涵,崔素萍,等.材料导报:研究篇,2018,32(11),3989.
32 赵永林.水玻璃激发矿渣超细粉胶凝材料的形成及水化机理的研究.硕士学位论文,西安建筑科技大学,2007.
33 Lyu X J, Yao G, Wang Z M, et al. Thermochimica Acta,2020,683,178457.
[1] 李锐, 曾令碧, 刘腾, 王晓杰, 杨平安. 不同温度下纯Ni/NiTi合金的摩擦特性研究[J]. 材料导报, 2020, 34(Z1): 297-303.
[2] 李宸庆, 侯雅青, 苏航, 潘涛, 张浩. 铁/镍元素粉末的选区激光熔化过程扩散动力学研究[J]. 材料导报, 2020, 34(Z1): 370-374.
[3] 刘伟, 崔升, 李建平, 叶欣, 尚思思, 杨照军, 沈晓冬. 气凝胶吸油材料的研究进展[J]. 材料导报, 2020, 34(9): 9019-9027.
[4] 闫敬明, 黎平, 左孝青, 周芸, 罗晓旭. Al-Ti-B晶粒细化剂研究进展:细化机理及第二相控制[J]. 材料导报, 2020, 34(9): 9152-9157.
[5] 贾子龙, 刘志红, 宋杨, 范晓东. Zr改性磷石膏/粉煤灰复合材料对选矿废水中油酸钠的吸附[J]. 材料导报, 2020, 34(7): 7015-7019.
[6] 林铁贵, 张玉芬. 晶格畸变对VO2相变温度的影响[J]. 材料导报, 2020, 34(6): 6057-6061.
[7] 王晴, 康升荣, 吴丽梅, 张强, 丁兆洋. 地聚合物凝胶结构建模及分子动力学模拟[J]. 材料导报, 2020, 34(4): 4056-4061.
[8] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[9] 周颖, 郭建兵, 何玮頔, 徐定红, 王蒙. 紫外老化对长玻纤增强聚丙烯复合材料流变性能和非等温结晶动力学的影响[J]. 材料导报, 2020, 34(12): 12146-12151.
[10] 宋鹏宇, 邓永岩, 韩海杰, 金桥. 活性氧可激活的聚合物纳米载体用于光动力-化疗联合治疗的研究[J]. 材料导报, 2020, 34(10): 10166-10170.
[11] 刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
[12] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[13] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[14] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[15] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed