Please wait a minute...
材料导报  2019, Vol. 33 Issue (z1): 491-494    
  高分子与聚合物基复合材料 |
TAP-BPDA超支化聚酰亚胺的制备及性能
陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新
成都工业学院材料工程学院,成都 610031
Synthesis and Properties of TAP-BPDA Hyperbranched Polyimides
CHEN Ying, ZHOU Hongmei, CHEN Deping, MU Dong, WEI Yanhong, YE Yuanxin
School of Materials Engineering,Chengdu Technological University, Chengdu 610031
下载:  全 文 ( PDF ) ( 1738KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用不同物质的量比的3,3′,4,4′-联苯四甲酸二酐(BPDA)和2,4,6-三氨基嘧啶(TAP)合成了一系列具有不同终端基团的超支化聚酰亚胺。然后采用红外光谱(FT-IR)、核磁共振(1H-NMR)、凝胶渗透色谱(GPC)、热失重分析(TGA)、差示扫描量热仪(DSC)对合成的超支化聚酰亚胺进行了测试和表征。结果表明:酸酐终端的超支化聚酰亚胺的分子量和特性粘度高于氨基终端的超支化聚酰亚胺,并且,当TAP与BPDA的物质的量比为2∶3时,所得超支化聚酰亚胺具有最高的数均分子量和最高的特性粘度。氨基终端的超支化聚酰亚胺比酸酐终端的超支化聚酰亚胺具有更高的5%热失重温度和玻璃化转变温度。对聚酰亚胺的溶解性能进行测试,结果表明,所得到的三种超支化聚酰亚胺在N,N-二甲基甲酰胺(DMF)、二甲亚砜(DMSO)等非质子强极性溶剂中具有良好的溶解性能,并且酸酐终端超支化聚酰亚胺的溶解性优于氨基终端的超支化聚酰亚胺。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈营
周红梅
陈德平
慕东
魏燕红
叶远新
关键词:  超支化聚酰亚胺  合成  分子量  溶解性能  热性能    
Abstract: Aseries of hyperbranched polyimides with different terminated groups were prepared based on BPDA and 2,4,6-triaminopyrimidine (TAP) via a two-step polymerization. The obtained HBPIs’ structures and performance were characterized by Fourier transform infrared spectroscopy(FT-IR), gel permeation chromatography(GPC), thermal gravimetrie analysis(TGA), differential scanning calorimetry(DSC), and so on.The results show that the polyimides with the highest number average molecular weights (Mn) and inherent viscosities would be obtained when the molar ratio of TAP to BPDA was 2∶3. And the glass transition temperatures (Tg) and 5% weight loss temperatures of amine-terminated polyi-mides were higher than that of anhydride-terminated polyimides. All of the polyimides showed excellent solubility in strong polar solvents such as DMF and DMSO, and the solubility of anhydride-terminated polyimides were higher than that of amine-terminated polyimides
Key words:  hyperbranched polyimides    synthesis    molecular weight    solubility    thermal property
               出版日期:  2019-05-25      发布日期:  2019-07-05
ZTFLH:  O63  
基金资助: 四川省科技计划项目(2019YJ0376)
作者简介:  陈营,1986年生,博士,成都工业学院讲师。2008年毕业于西北工业大学高分子材料与工程专业,获工学学士学位;2013年毕业于西北工业大学高分子化学与物理专业,获理学博士学位;2014—2016年在电子科技大学材料学专业开展博士后研究。在国内外期刊发表论文20余篇,其中SCI 收录6篇,一区文章2篇。主要从事高分子改性与加工方向的研究工作,主持一项四川省科技计划项目。chy043151@163.com
引用本文:    
陈营, 周红梅, 陈德平, 慕东, 魏燕红, 叶远新. TAP-BPDA超支化聚酰亚胺的制备及性能[J]. 材料导报, 2019, 33(z1): 491-494.
CHEN Ying, ZHOU Hongmei, CHEN Deping, MU Dong, WEI Yanhong, YE Yuanxin. Synthesis and Properties of TAP-BPDA Hyperbranched Polyimides. Materials Reports, 2019, 33(z1): 491-494.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/Iz1/491
1 Meyer G W, Pak S J, Lee Y J, et al. Polymer,1995,36(11),2303.
2 Sroog C E. Progress in Polymer Science(UK),1991,16(4),561.
3 丁孟贤. 聚酰亚胺: 化学, 结构与性能的关系及材料. 科学出版社,2006.
4 Liu Y, Zhang Y, Lan Q, et al. Chemistry of Materials,2012,24(6),1212.
5 龚金华, 王臣辉, 卞子君, 等. 物理化学学报,2015,31(10),1963.
6 Zhuang Y, Seong J G, Do Y S, et al. Journal of Membrane Science,2016,504,55.
7 Zhuang Y, Seong J G, Do Y S, et al. Macromolecules,2014,47(10),3254.
8 Robeson L M, Dose M E, Freeman B D, et al. Journal of Membrane Scie-nce,2017,525,18.
9 Flory P J. Journal of the American Chemical Society,1952,74(11),2718.
10 Kim Y H, Webster O W. Journal of the American Chemical Society,1990,112(11),4592.
11 Fang J, Kita H, Okamoto K. Macromolecules,2000,33(13),4639.
12 Fang J, Kita H, Okamoto K. Journal of Membrane Science,2001,182(1),245.
13 Hawthorne D G, Hodgkin J H. High Performance Polymers,1999,11(3),315.
14 Fang Q, Wang J, Gu S, et al. Journal of the American Chemical Society,2015,137(26),8352.
15 Liaw D J, Wang K L, Huang Y C, et al. Progress in Polymer Science,2012,37(7),907.
16 Gu J, Lv Z, Wu Y, et al. Composites Part A: Applied Science and Manufacturing,2017,94,209.
17 Kim Y H, Webster O W. Journal of the American Chemical Society,1990,112(11),4592.
18 Kim Y H. Journal of Polymer Science Part A Polymer Chemistry,1998,36(11),1685.
19 Fang J, Kita H, Okamoto K. Macromolecules,2000,33(13),4639.
20 Fang J, Kita H, Okamoto K. Journal of Membrane Science,2001,182(1),245.
[1] 春风, 特古斯, Tsogbadrakh N, Sangaa D. Mg1-xCaxFe2O4化合物的结构、磁性及交变磁场中的发热性能[J]. 材料导报, 2019, 33(z1): 122-125.
[2] 王应武, 左孝青, 冉松江, 孔德昊. TiB2含量及T6热处理对原位TiB2/ZL111复合材料显微组织和硬度的影响[J]. 材料导报, 2019, 33(8): 1371-1375.
[3] 张晶, 李红霞, 刘国齐. 高能球磨-盐辅助氮化低温合成α-Si3N4粉体[J]. 材料导报, 2019, 33(5): 739-743.
[4] 周颖, 张道海, 秦舒浩. DOPO衍生物的合成与阻燃应用研究现状[J]. 材料导报, 2019, 33(5): 901-906.
[5] 沙胜男, 史才军, 向顺成, 焦登武. 聚羧酸减水剂的合成技术研究进展[J]. 材料导报, 2019, 33(3): 558-568.
[6] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[7] 余明远, 王璐, 曲雯雯, 张利波, 张家麟, 陈阵. 硫化镉/石墨烯复合光催化剂的微波水热合成及DFT研究[J]. 材料导报, 2019, 33(10): 1602-1608.
[8] 魏金枝,王雪亮,孙晓君,张凤鸣. 绿色电化学法合成金属有机骨架材料的研究现状[J]. 《材料导报》期刊社, 2018, 32(9): 1435-1441.
[9] 刘第强, 贾建刚, 高昌琦, 王建宏. 机械化学合成Ni2Al3/Al2O3去合金化制备Raney-Ni/Al2O3复合粉体[J]. 材料导报, 2018, 32(6): 957-960.
[10] 张利波, 王璐, 曲雯雯, 徐盛明, 张家麟. Al2O3基石油加氢脱硫催化剂研究现状与进展[J]. 《材料导报》期刊社, 2018, 32(5): 772-779.
[11] 何宁宁,侯晨曦,舒小艳,马登生,卢喜瑞. 自蔓延高温合成技术在高放废物处理领域的应用进展[J]. 《材料导报》期刊社, 2018, 32(3): 510-514.
[12] 刘自力, 林嘉伟, 罗扬, 任丽, 左建良. 表面活性剂协同超声分散制备还原氧化石墨烯@月桂酸-棕榈酸复合相变材料及其表征[J]. 材料导报, 2018, 32(24): 4381-4385.
[13] 肖国庆, 周盼, 丁冬海. 熔盐对ZrO2纤维模板辅助燃烧合成ZrB2纤维的影响[J]. 材料导报, 2018, 32(22): 3875-3879.
[14] 张晓春,于良民,姜晓辉. 含辣素衍生结构单体及其聚合物的合成、抑菌与抑藻性能[J]. 《材料导报》期刊社, 2018, 32(2): 193-197.
[15] 周头军,李家节,郭诚君,丁云峰,陈金水. 回收制备烧结Nd-Fe-B磁体的磁性能与耐热性能[J]. 《材料导报》期刊社, 2018, 32(2): 180-183.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed