Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 419-423    
  金属与金属基复合材料 |
梯度纳米多晶铜纳米切削过程的分子动力学仿真
王子云, 赵鹏越, 郭永博, 张凯, 王康
精密工程研究所(哈尔滨工业大学),哈尔滨150001
Simulation on Nano-cutting Process of Gradient Nano-crystalline Copper withMolecular Dynamics Method
WANG Ziyun, ZHAO Pengyue, GUO Yongbo, ZHANG Kai, WANG Kang
Center for Precision Engineering (Harbin Institute of Technology), Harbin 150001
下载:  全 文 ( PDF ) ( 2389KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 梯度纳米多晶金属材料具有优良的塑性和强度特性,适合作为微纳系统的制造材料,近年来逐渐成为研究热点。为研究梯度多晶材料的加工去除机理,采用Poisson-Voronoi方法建立大规模梯度多晶铜分子动力学模型,数值模拟梯度多晶铜的纳米切削过程,对比分析切割细晶层(过程1)和切割粗晶层(过程2)的切削力、缺陷和应力等参数。仿真结果表明,过程1的切削力明显小于过程2,而过程2的切削力波动较大。比较分析整个切削过程的缺陷数量和分布,发现过程2的缺陷数量高于过程1;分析刀具附近缺陷的形成过程发现,过程1的缺陷主要在刀具前形核并扩散,过程2的缺陷主要在刀具前和刀具底部形核并扩散;基于应力分析发现,过程2的范式等效应力大于过程1。本研究可为梯度纳米多晶铜的纳米切削机理提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王子云
赵鹏越
郭永博
张凯
王康
关键词:  梯度纳米多晶铜  纳米切削  切削力  缺陷  内应力    
Abstract: Due to the excellent plasticity and strength properties, gradient nanocrystalline metal materials are suitable for the manufacture material of micro-nanometer systems and have gradually become a research hotspot in recent years. In order to study the processing and removal mechanism of gradient polycrystalline materials, the Poisson-Voronoi method is used to build a large-scale gradient polycrystalline copper molecular dynamics model and simulate the nano-cutting process of gradient polycrystalline copper. The cutting force, defect and stress of cutting fine crystal layer (process 1) between cutting coarse crystal layer (process 2) are compared and analyzed. The results show that the cutting force of process 1 is obviously less than that of process 2, and the cutting force of process 2 fluctuates greatly. Comparing the number and distribution of defects in the whole cutting process, it is found that the number of defects in process 2 is higher than that in process 1. The forming process of defects around the tool is analyzed in detail. It is found that the defects of process 1 are mainly formed and diffused before the tool, and the defects of process 2 are mainly formed and diffused before the tool and at the bottom of the tool. In stress analysis, it is found that the equivalent stress of process 2 is greater than that of process 1. The research has a certain reference value for nano-cutting process of gradient nano-crystalline copper.
Key words:  gradient nano-crystalline copper    cutting process    cutting force    detect    inner stress
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TB31  
基金资助: 国家自然科学基金(51535003),国家自然科学基金面上项目(51775146)
通讯作者:  ybguo@hit.edu.cn   
作者简介:  王子云,哈尔滨工业大学机电学院硕士研究生,研究方向为基于分子动力学的微纳切削仿真研究。
郭永博,哈尔滨工业大学机电工程学院教授,博导,工学博士,精密工程研究所所长助理。主持国家自然科学基金青年项目和面上项目、高档数控机床与基础制造装备04专项、921工程、中国博士后特别资助、中国博士后面上基金(一等)等纵向科研项目及多项载人航天、超高速风洞等横向科研项目,近五年负责在研经费约7000多万元。作为第一负责人获得黑龙江省科技进步二等奖、全国上银机械优秀博士论文奖、哈尔滨工业大学校优秀博士论文等。参与主编专著1部,申请国家发明专利10余项,授权10项。在Acta MaterialiaApplied Physics LettersPhilosophical Magazine、《中国科学》《金属学报》等国内外著名期刊及欧洲精密工程与纳米技术EUSPEN、ASPEN等国际学术会议发表学术论文。
引用本文:    
王子云, 赵鹏越, 郭永博, 张凯, 王康. 梯度纳米多晶铜纳米切削过程的分子动力学仿真[J]. 材料导报, 2019, 33(Z2): 419-423.
WANG Ziyun, ZHAO Pengyue, GUO Yongbo, ZHANG Kai, WANG Kang. Simulation on Nano-cutting Process of Gradient Nano-crystalline Copper withMolecular Dynamics Method. Materials Reports, 2019, 33(Z2): 419-423.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/419
1 Rossi C, Zhang K, Esteve D, et al. Journal of Microelectromechanical Systems,2007,16(4),919.
2 Roncaglia A, Ferri M. Science of Advanced Materials,2011,3(3),401.
3 Embury D, Bouaziz O. Annual Review of Materials Research,2010,40(40),213.
4 Lu K. The Future of Metals Science,2010,328(5976),319.
5 Amada S. MRS Bulletin,1995,20(1),35.
6 Ghavami K, Rodrigues C S, Paciornik S. Asian Journal of Civil Enginee-ring,2003,4(1),1.
7 Meyers M A, Chen P Y, Lin A Y M, et al. Progress in Materials Science,2008,53(1),201.
8 Espinosa H D,Rim J E, Barthelat F, et al. Progress in Materials Science,2009,54(8),1059.
9 Yang L, Tao NR, Lu K, et al. Scripta Materialia,2013,68(10),801.
10 Wu Xiaolei, Jiang Ping, Chen Liu, et al. Proceedings of the National Academy of Sciences of the United States of America,2014,111(20),7197.
11 Li Wenbin, Yuan Fuping, Wu Xiaolei. AIPAdvances,2015,5(8),1.
12 Zhu Linli, Ruan Haihui, Chen Aiying, et al. Actamaterialia,2017,128,375.
13 Zhao Pengyue, Guo Yongbo.Computational Materials Science,2018,155,431.
14 Efschiotz J, Vegge T. Physical Review B,1999,60(17),11971.
15 Van S H, Derlet P M, Froseth A G. Acta Materialia,2006,54(7),1975.
16 Bitzek E, Brandl C, Derlet P M, et al. Physical Review Letters,2008,100(23),235501.
17 Yamakov V, Wolf D, Phillpot S R, et al. Nature Materials,2002,1,45.
18 Shabib I, Miller R E. Acta Materialia,2009,57(15),4364.
19 Rupert T J. Scripta Materialia,2014,81,44.
20 Babicheva R I, Dmitriev S V, Zhang Y, et al. Computational Materials Science,2015,98,410.
21 Purohit Y, Sang J, Irving D L, et al. Materials Science and Engineering: A,2008,493(1-2),97.
22 Lin Y, Pan J, Zhou H F, et al. Actamaterialia,2018,153,279.
[1] 王晓娟,刘林,黄太文,杨文超,岳全召,霍苗,张军,傅恒志. 碳对镍基单晶高温合金凝固缺陷影响的研究进展[J]. 材料导报, 2020, 34(3): 3148-3156.
[2] 王磊, 吴天昊, 崔丹钰, 杨旭东. 甲胺(MA)基钙钛矿太阳电池光诱导缺陷机理及稳定性提高[J]. 材料导报, 2020, 34(2): 2001-2004.
[3] 周理想, 黄仕华, 吴锋民. 异质结太阳能电池的仿真模拟研究和界面态密度对效率的影响[J]. 材料导报, 2019, 33(Z2): 28-31.
[4] 王冰. 铁素体不锈钢表面的拉丝缺陷[J]. 材料导报, 2019, 33(Z2): 460-462.
[5] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[6] 田柳文, 于华, 章文峰, 陈涛, 黄跃龙, 郑先峰. 锂离子电池的明星材料磷酸铁锂:基本性能、优化改性及未来展望[J]. 材料导报, 2019, 33(21): 3561-3579.
[7] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[8] 刘刚铄, 戴树玺, 高亚鸽, 顾玉宗. 缺陷态结构:开启石墨烯特殊性质和应用之门的钥匙[J]. 材料导报, 2019, 33(19): 3219-3226.
[9] 尹华伟, 李明伟, 周川, 胡志涛. ADP晶体生长过程中的运动方式对晶体性能的影响[J]. 材料导报, 2019, 33(16): 2660-2664.
[10] 胡俊, 任建伟, 马巍, 刘建华, 王爱国. 冲击荷载下含随机缺陷的梯度蜂窝材料的力学性能[J]. 材料导报, 2019, 33(16): 2777-2784.
[11] 康学良, 董世运, 汪宏斌, 门平, 徐滨士, 闫世兴. 基于磁巴克豪森原理的铁磁材料各向异性检测技术综述[J]. 材料导报, 2019, 33(1): 183-190.
[12] 周超极, 朱胜, 王晓明, 韩国峰, 周克兵, 徐安阳. 热喷涂涂层缺陷形成机理与组织结构调控研究概述[J]. 材料导报, 2018, 32(19): 3444-3455.
[13] 李通, 李金权, 王文广, 倪丁瑞. 影响碳/金属复合材料导热性能的主要因素探讨[J]. 材料导报, 2018, 32(15): 2640-2646.
[14] 彭谦, 董世运, 闫世兴, 门平, 王斌. 激光熔化沉积成形缺陷及其控制方法综述[J]. 材料导报, 2018, 32(15): 2666-2671.
[15] 黄海深,孙剑,吴波,杨秀德,李平. LiMgPbSb型四元Heusler合金CrFeHfGa原子缺陷和无序效应[J]. 《材料导报》期刊社, 2018, 32(12): 2124-2128.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed