Please wait a minute...
材料导报  2019, Vol. 33 Issue (Z2): 130-133    
  无机非金属及其复合材料 |
UO2-Er2O3燃料热物理性能的分子动力学模拟
刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮
中国核动力研究设计院,成都 610213
Simulation of Thermophysical Properties of UO2-Er2O3 Fuel by Molecular Dynamics
LIU Yu, XIAO Hongxing, ZHANG Xiang, ZENG Qiang, LIU Zhe, LENG Ke, MA Liang
Nuclear Power Institute of China, Chengdu 610213
下载:  全 文 ( PDF ) ( 1910KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了维持反应堆中核裂变反应的平稳运行,需要在反应堆燃料元件中加入可燃毒物。可燃毒物在反应堆运行初期吸收大量热中子,抑制核燃料的裂变,在反应堆运行后期,随着可燃毒物逐渐被消耗,热中子增多,可以弥补因为可裂变核素减少而逐渐降低的反应性,从而保证核裂变反应在整个反应堆运行寿期的平稳运行。目前,反应堆中使用的可燃毒物主要有Gd2O3和ZrB2,随着燃耗增加,由于Gd2O3和ZrB2消耗过快,毒物消耗与燃料燃耗很难匹配。Er2O3由于具有燃烧缓慢、平稳,反应性惩罚小的特性,被认为适合于未来高燃耗、长寿期的燃料元件。利用Er2O3作为可燃毒物,提高燃料富集度,可以提高燃料元件的卸料燃耗,提高燃料利用率,降低核电运行成本。
本工作采用分子动力学方法对Er2O3含量为6mol%的燃料芯块的热物理性能进行了模拟研究,建立了UO2-6mol%Er2O3可燃毒物燃料芯块的理论模型,并基于此计算了UO2-6mol%Er2O3燃料芯块的热物理性能,主要包括:燃料芯块的晶格点阵参数、热膨胀系数、比热容和热导率。研究表明:(1)UO2-6mol%Er2O3燃料的晶格点阵参数随着温度的升高而线性增大,并满足数学关系式:a(T)=0.542 65+5.717 06×10-6T-3.674 98×10-10T2+3.432 3×10-13T3(nm);(2)UO2-6mol%Er2O3燃料的热膨胀系数随着温度的升高逐渐增大,且增大速率也随温度升高而增大,燃料晶体相对于300K时的平均热膨胀系数与温度的关系式为γ=1.028 449×10-5-3.556 13×10-10T+5.730 38×10-13T2 (K-1);(3)UO2-6 mol%Er2O3燃料的比热容随着温度的升高逐渐增大,且增大速率随温度升高而减小,满足Cp(J·mol-1·K-1)=47.545+51.276 6×10-3T-17.191 3×10-6T2;(4)UO2-6mol%Er2O3燃料的热导率随着温度的升高逐渐减小,满足关系式k=10.145+1.185×10-4·T
本文采用分子动力学方法计算了UO2-6mol%Er2O3燃料的晶格点阵参数、热膨胀系数、比热容和热导率等性能。通过理论计算,为含Er2O3可燃毒物燃料的进一步研究与工程应用提供支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘羽
肖红星
张翔
曾强
刘喆
冷科
马亮
关键词:  分子动力学  UO2-6mol%Er2O3  晶格参数  热膨胀系数  比热容  热导率    
Abstract: In order to maintain the smooth operation of the nuclear fission reaction in the reactor, it is necessary to add burnable poison to the fuel elements of the reactor, which could absorb a large amount of thermal neutrons in the initial stage of the reactor operation to suppress the fission of the nuclear fuel. And in the later stages of reactor operation, as the burnable poison are gradually consumed, the number of thermal neutrons increases, which can compensate for the gradual decrease in reactivity due to the reduction of fissile nuclide, thereby maintaining the smooth operation of the nuclear fission reaction throughout the operating life of the reactor. At present, the main burnable poisons used in the reactor are Gd2O3 and ZrB2, as the fuel burnup increases, the consumption of burnable poison and fuel burnup are difficult to match due to the excessive consumption of Gd2O3 and ZrB2. Er2O3 is considered to be suitable for fuel elements with high fuel burnup and long life in the future due to its slow bur-ning, stability, and low reactivity penalty. Using Er2O3 as burnable poisonous to improve fuel enrichment can improve fuel discharge and fuel consumption, improve fuel utilization and reduce nuclear power operation costs.
In this paper, the thermophysical properties of fuel pellets with Er2O3 content of 6 mol% were simulated by molecular dynamics method. The theoretical model of UO2-6mol%Er2O3 burnable poisonous fuel pellets was established. Based on this, the thermophysical properties of UO2-6mol%Er2O3 fuel pellets were calculated, including lattice lattice parameters, thermal expansion coefficient, specific heat capacity and thermal conductivity of the fuel pellets. Research shows that: (1) The lattice lattice parameters of UO2-6mol%Er2O3 fuel increase linearly with increasing temperature, satisfying the mathematical relationship of a(T)=0.542 65+5.717 06×10-6T-3.674 98×10-10T2+3.432 3×10-13T3(nm). (2) The thermal expansion coefficient of UO2-6%Er2O3 fuel increased with the increase of temperature, and the increase rate increased with the increase of temperature. The relationship between the average thermal expansion coefficient and temperature of the fuel crystal relative to 300K was γ=1. 028 449×10-5-3.556 13×10-10T+5.730 38×10-13T2(K-1). (3) The specific heat capacity of UO2-6mol%Er2O3 fuel increased with the increase of temperature, and the increase rate decreased with the increase of temperature, which satisfied Cp(J·mol-1·K-1)=47.545+51.276 6×10-3·T-17.191 3×10-6·T2. (4) The thermal conductivity of UO2-6%Er2O3 fuel decreased with increasing temperature, which satisfied k=10.145+1.185×10-4·T .
In this paper, the lattice parameters, thermal expansion coefficient, specific heat capacity and thermal conductivity of UO2-6%Er2O3 fuel were calculated by molecular dynamics method. Through theoretical calculations, it provided support for further research and engineering applications of Er2O3 burnable poisonous fuels.
Key words:  molecular dynamics    UO2-6%Er2O3    lattice parameter    thermal expansion coefficient    specific heat capacity    thermal conductivity
               出版日期:  2019-11-25      发布日期:  2019-11-25
ZTFLH:  TL352  
通讯作者:  459927925@qq.com   
作者简介:  刘羽,2018年6月毕业于中国核动力研究设计院,获得工程硕士学位,现主要从事核燃料循环与材料领域的研究。
引用本文:    
刘羽, 肖红星, 张翔, 曾强, 刘喆, 冷科, 马亮. UO2-Er2O3燃料热物理性能的分子动力学模拟[J]. 材料导报, 2019, 33(Z2): 130-133.
LIU Yu, XIAO Hongxing, ZHANG Xiang, ZENG Qiang, LIU Zhe, LENG Ke, MA Liang. Simulation of Thermophysical Properties of UO2-Er2O3 Fuel by Molecular Dynamics. Materials Reports, 2019, 33(Z2): 130-133.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2019/V33/IZ2/130
1 娄磊,姚栋,柴晓明,等.科技创新导报,2018(22),44.
2 黄世恩,杨平,汪量子,等.核动力工程,2017,38(2),6.
3 赵传奇,曹良志,吴宏春,等.原子能科学技术,2016,50(8),1433.
4 强胜龙,秦冬,柴晓明,等.核动力工程,2014,35(2),1.
5 李满仓,刘仕倡,秦冬,等.原子能科学技术,2019(7),1188.
6 刘羽,张翔,杨静,等.核动力工程,2014,39(5),47.
7 Kim S H, Kim Y G, Kim H S, et al. Journal of Nuclear Materials,2005,342,119.
8 Yamanaka S, Kurosaki K. Katayama M,et al. Journal of Nuclear Mate-rials,2009,389(1),115.
9 Wei X, Pan W, Cheng L F, et al. Solid State Ionics,2009,180(1),13.
[1] 吴珊妮, 赵远, 姜宏, 文峰, 熊春荣. 具有优良隔热和力学性能的低热导率W/Al2O3纳米多层功能膜的构建[J]. 材料导报, 2020, 34(2): 2023-2028.
[2] 郭丽婷, 李晓延, 姚鹏, 李扬. 电场作用下Cu/Cu3Sn界面原子扩散行为的分子动力学模拟[J]. 材料导报, 2020, 34(2): 2137-2141.
[3] 刘朝, 邱舒怿, 黄红梅, 郭萍, 霍二光. 吸热型碳氢燃料正辛烷的热分解机理[J]. 材料导报, 2019, 33(8): 1251-1256.
[4] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[5] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[6] 王煜烨, 汤爱涛, 潘荣剑, 潘复生. 分子动力学在镁及镁合金微观塑性变形中的应用进展[J]. 材料导报, 2019, 33(19): 3290-3297.
[7] 盛鹰, 朱星亮, 曾祥国, 贾彬, 文军. 裂纹扩展和裂尖变形机理的多尺度耦合数值模拟方法[J]. 材料导报, 2019, 33(14): 2419-2425.
[8] 吴孟武,华 林,周建新,殷亚军. 导热铝合金及铝基复合材料的研究进展[J]. 《材料导报》期刊社, 2018, 32(9): 1486-1495.
[9] 张晓宇,许旻,曹生珠. 高导热金刚石/铜复合材料界面修饰研究进展[J]. 《材料导报》期刊社, 2018, 32(3): 443-452.
[10] 任曼飞, 黄国强. 用于高温蓄热介质的二氧化硅纳米颗粒/三元碳酸盐复合熔盐纳米流体的制备方法对比[J]. 材料导报, 2018, 32(23): 4067-4071.
[11] 马玉聪, 樊保民, 郝华, 吕金玉, 杨彪, 冯云皓. 肉桂醛超分子缓蚀剂对冷凝水中铁含量的净化机理[J]. 材料导报, 2018, 32(20): 3660-3666.
[12] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[13] 喻选,辛勇. 聚合物注塑成型充模阶段流动取向分子机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 327-332.
[14] 丁军, 汪建, 黄霞, 王路生, 赵昊男, 宋鹍. 含孔洞缺陷的单晶α-Ti单轴拉伸下的微观变形机理及力学性能[J]. 材料导报, 2018, 32(18): 3171-3180.
[15] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[4] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] WANG Wenjin, WANG Keqiang, YE Shenjie, MIAO Weijun, CHEN Zhongren. Effect of Asymmetric Block Copolymer of PI-b-PB on Phase Morphology and Properties of IR/BR Blends[J]. Materials Reports, 2017, 31(2): 96 -100 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] WU Tao, MAO Lili, WANG Haizeng. Preparation and Defluoridation Performance of Mg/Fe-LDHO/PES Membranous Adsorbent[J]. Materials Reports, 2017, 31(14): 26 -30 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed