Please wait a minute...
材料导报  2019, Vol. 33 Issue (7): 1099-1108    https://doi.org/10.11896/cldb.17120236
  材料与可持续发展(二)——材料绿色制造与加工* |
粉末钛合金热等静压近净成形技术及发展现状
阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华
航天材料及工艺研究所,北京 100076
Near-net Shaping of Titanium Alloy Powders by HIP Technology: a Review
YIN Zhongwei, SUN Yanbo, ZHANG Xuhu, WANG Liang, XU Guihua
Aerospace Research Institute of materials and Processing Technology, Beijing 100076
下载:  全 文 ( PDF ) ( 21172KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粉末钛合金热等静压(HIP)近净成形技术作为一种理想的钛合金构件制备工艺之一,可以通过整体近净成形产品来提高材料利用率,降低钛合金产品的生产成本和生产周期,因此越来越受到武器装备等军工领域的关注。自该工艺出现以来,材料学者从原材料粉末的制备、包套设计、近净成形过程到材料的后处理都做了系统的研究,以了解该工艺的技术原理和材料性能影响因素,进而获得更高性能的产品,并进一步降低生产成本。
研究表明,原材料粉末和包套设计是影响粉末钛合金近净成形产品质量和成本最重要的两个因素。球形度高、流动性好的钛合金粉末具有好的填充性和高的松装密度,能增加产品的成形精度。与此同时,作为控制粉末冶金制品中组织结构、孔洞和杂质元素的关键因素,高质量钛合金粉末的使用还可以获得力学性能更加优异的产品,但此种粉末的价格较高,增加了粉末冶金的生产成本,所以高质量、低成本钛合金粉末的制备是钛合金粉末冶金未来发展的重要方向之一。包套作为钛合金HIP近净成形技术的主要成本构成之一,合适的材料选择和结构设计既可以提高产品的成形精度又可以改善产品的表面质量,而通过计算机仿真模拟技术来设计包套和模拟近净成形过程,可以进一步提高成形精度和降低构件的研发成本,因此计算机仿真模拟是钛合金HIP近净成形未来发展的重点。通过选择合适的原材料粉末、设计合理的成形包套以及精确控制的成形过程,目前HIP近净成形获得的钛合金构件显示出与锻件相当的力学性能,而成本相对铸锻件节约了1/3以上。近年来,粉末钛合金热等静压近净成形技术在国外的航空航天等军工领域都已经得到了广泛的应用,并显现出理想的减重和降低成本的效果;国内则主要以航天领域的应用为主,而对其疲劳性能的质疑是限制其在国内航空领域广泛应用的主要原因。
本文对粉末钛合金HIP近净成形技术进行了全面综述,对工艺过程中的影响因素,粉末致密化过程、力学性能及其影响因素等分别进行了阐述,同时介绍了计算机仿真模拟技术在粉末钛合金HIP近净成形技术上的应用。最后对该技术在国内外的应用情况进行了简要总结,并展望了该技术未来的发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
阴中炜
孙彦波
张绪虎
王亮
徐桂华
关键词:  钛合金  粉末冶金  热等静压  近净成形    
Abstract: As one of the ideal fabrication processes of titanium alloy components,HIP near-net shaping technology of titanium alloy powders has aroused enormous interests in the field of military industry because it is able to improve the utilization efficiency of materials, reduce the production cost and shorten production cycle of titanium alloy products. Since the emergence of this process, researchers have performed systematic studies from the preparation of raw material powders, design of canning, procedure of near-net shaping to the post-treatment of materials, aiming at revealing the mechanism of the technology and influencing factors of materials property, and further achieving products with higher performance and lower production cost.
According to previous research results, the raw material powders and canning design constitute the major influencing factors on the qualities of the powder metallurgical (P/m) products. Titanium alloy powders with high sophericity and good fluidity show favorable filling property and high apparent density, which contribute to the forming precision of the products. meanwhile, as a key factor to control the structure, voids and impurities in P/m products, high quality titanium powders are conducive to acquiring products with high performance. Nevertheless, high price of this kind of powders will raise the production cost of P/m products for the high price. Consequently, preparing titanium alloy powders with high quality and low cost is one of the most important study directions for the future development of P/m titanium alloys. Besides, appropriate materials selection and structure design of canning, one of the major components, can not only improve the forming precision but also enhance the surface quality of the P/m products. moreover, the application of the computer simulations on the canning design and forming process could further improve the forming precision and reduce the R&D costs; as a result, computer simulation has become the focus of the future development of HIP near net shaping of titanium alloy. By selecting suitable raw material powders, designing reasonable canning and controlling the forming process accurately, the P/m Ti products obtained by HIP near-net shaping technology exhibit equivalent mechanical properties compared to the forging titanium alloys, with a more than 33% cost reduction. In recent years, P/m titanium alloy products by HIP technology have been extensively applied in foreign military fields like aerospace, achieving obvious effect of weight and cost reduction. While, it owns limited application in aerospace fields at home, and its fatigue performance is still questioned by the domestic aircraft industry.
The scope of this article is to review the near-net shaping of titanium alloy powders by HIP technology, elaborating the influence factors of the formation process, densification mechanism and mechanical properties of the P/m products etc. meanwhile, the computer simulation for the HIP near net shaping process is also introduced. Finally, the application of this technology at home and abroad is summarized, and its development trend is proposed.
Key words:  titanium alloys    powder metallurgy    hot isostatic pressing    near-net shaping
               出版日期:  2019-04-10      发布日期:  2019-04-10
ZTFLH:  TG146  
基金资助: 装备预先研究项目
通讯作者:  songwen0209102@163.com   
作者简介:  阴中炜,航天材料及工艺研究所特种金属材料及工艺事业部副主任,高级工程师。2008年7月毕业于哈尔滨工业大学,获得工学硕士学位。主要研究领域为航空航天用先进金属材料与成形工艺。目前已获得国防科技进步奖2项,发表学术论文10余篇。孙彦波,博士,工程师,2015年7月毕业北京航空航天大学,现就职于航天材料及工艺研究所特种金属材料及工艺事业部,主要研究领域为钛合金及难熔金属粉末冶金技术、难熔金属旋压成形工艺技术。张绪虎,研究员/副总师,航天材料及工艺研究所特种金属材料及工艺事业部主任,博士毕业于西北工业大学材料加工专业,主要从事航空航天用铝、镁、钛合金等先进轻质高强金属材料及其工艺技术的研究工作和多种运载、武器型号产品的开发、研制工作,获得国防科技进步奖4项,发表论文50余篇。
引用本文:    
阴中炜, 孙彦波, 张绪虎, 王亮, 徐桂华. 粉末钛合金热等静压近净成形技术及发展现状[J]. 材料导报, 2019, 33(7): 1099-1108.
YIN Zhongwei, SUN Yanbo, ZHANG Xuhu, WANG Liang, XU Guihua. Near-net Shaping of Titanium Alloy Powders by HIP Technology: a Review. Materials Reports, 2019, 33(7): 1099-1108.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.17120236  或          http://www.mater-rep.com/CN/Y2019/V33/I7/1099
1 Eylon D, Froes F H, Parsons L D. In: 24th Structures, Structural Dynamics and materials Conference. Lake Tahoe, NV, USA, 1983, pp.586.
2 matthew J, Donachie J. Titanium-A technical guide. ASm International metals Park, OH, USA, 1988. pp. 113.
3 Williams J C. materials Science and Engineering A ,1999, 26,107.
4 Lutjering G, Williams J C. Titanium, Springer-Verlag Berlin Heidelberg Press, USA, 2003.
5 Huang X, Li Z X, Huang H. Recent materials China, 2011, 30 (6), 21(in Chinese).
   黄旭,李臻熙,黄浩. 中国材料进展, 2011, 30(6),21.
6 Bowden D m, Peter W H. Near-net shape fabrication using low-cost titanium alloy powders. The Boeing Company, Final Technical Report,2012.
7 Kelto C A, Kosmal B A, Eylon D. Journal of metals, 1980,32(8),17.
8 Sheinker A A, Chananic G R, Bohlen J. International Journal of Powder metallurgy, 1987, 23 (3),171.
9 Froes F H, moxson V S, Hebeisen J C. et al. JOm, 2004, 56(11), 46.
10 Liu Y, Chen L F, Tang H P, et al. materials Science and Engineering A, 2006, 418(1-2),25.
11 Kadiri E H, Wang L, Gulsoy O H, et al.JOm,2009, 61(5), 60.
12 Zhang W Y. Aeronautical manufacturing Technology, 2011(5),74(in Chinese).
张文毓. 航空制造技术, 2011(5), 74.
13 Froes F H, Eylon D. Titanium net shape technologies,The metallurtical Society of AImE Press, USA, 1984.
14 Wang L, Shi H P. Aerospace materials & Technology 2003(3),43(in Chinese).
王亮,史鸿培. 宇航材料与工艺, 2003(3),43.
15 Wang L, Lamg Z B, Shi H P. Transactions of Nonferrous metals Society of China, 2007, 2007(S1),639.
16 Froes F H. Powder metellurgy of titanium alloys,Woodhead Publishing, UK, 2013, pp. 202.
17 Ye C W, Wang L, Zhang X H, et al. materials Review A:Review Papers, 2012(12),112 (in Chinese).
叶呈武,王亮,张绪虎,等. 材料导报:综述篇 ,2012(12), 112.
18 Vincius A R, Henriques C E B, Cosme R m. Journal of materials Processing Technology, 2001, 118(1), 212.
19 Yolton C F. In: the Pm in Aerospace and Defense Technology Conference. Seattle, Washington, 1989, pp. 123.
20 ma Q, Froes F H. Titanium powder metallurgy science, technology and applications, Butterworth-Heinemann UK, 2015, pp. 1.
21 Nachtrab W T, Roberts W T. Key Engineering materials, 1993, 77-78, 115.
22 Gerhard W, Rainer G, Frank S. Acta materialia, 2003, 51(3), 741.
23 He W W, Jia W P, Yang G Y, et al. Titanium Industry Progress, 2012, 29(4), 1(in Chinese).
贺卫卫,贾文鹏,杨广宇,等. 钛工业进展, 2012, 29(4), 1
24 Huang G, Cao X H, Long X G. materials Review, 2006(10), 128.
黄刚,曹小华,龙兴贵. 材料导报, 2006(10), 128.
25 Vigna G, Domizzi G, Luppo m I. Journal of Alloys and Compounds, 2006, 424(1-2), 193.
26 Kim Y G, Kim E P, Song Y B, et al. Journal of Alloys and Compounds, 2014, 603, 207.
27 Boulos m I. Nuclear Engineering and Technology 2012, 44(1), 1.
28 Li S G, Lv H J. Aerospace materials & Technology, 2007(6),74 (in Chinese).
李圣刚,吕宏军. 宇航材料与工艺, 2007(6),74.
29 徐磊,郭瑞鹏,刘羽寅. 钛锆铪分会2014年年会. 大连,2014,pp. 112.
30 Delo D P, Piehler H R. Acta metarialia, 1999, 47(9), 2841.
31 Xue Y, Lang L H, Bu G L. Science of Sintering, 2011, 43(3), 247.
32 Kim Y m, Song Y B, Lee S H. Journal of Alloys and Compounds, 2015, 637 , 234.
33 Xu G H, Zhang X H, Zhao C m, et al. Aerospace materials & Technology, 2013(3),110 (in Chinese).
徐桂华,张绪虎,赵翠梅,等. 宇航材料与工艺, 2013(3),110.
34 Kim K T, Yang H C. materials Science and Engineering: A, 2001, 313(1-2), 46.
35 Tang S B, Guo R m, Zhang X m, et al. Acta metallurgica Sinca, 2002, 38(S), 650 (in Chinese).
谭拴斌,郭让民,张小明,等. 金属学报, 2002, 38(S),650.
36 Yuan W X, Samarov V, Seliverstov D, et al. Journal of materials Processing Technology. 2007, 182(1-3),39.
37 徐磊,邬军,刘羽寅,等. 钛锆铪分会2011年年会. 北京, 2011, pp.242.
38 Lin G K. Study on numerical simulation process and component properties of near net hot isostatic pressing by Ti6Al4V powder. master's Thesis, Huazhong University of Science and Technology, China, 2012(in Chinese).
蔺广科. 钛合金热等静压近净成形过程数值模拟及制件性能研究. 硕士论文, 华中科技大学,2012.
39 Wang H T, Fang Z Z, Sun P. International Journal of Powder metallurgy, 2010, 46(5), 45.
40 Eylon D, Froes F H, Abkowitz S. Titanium powder metallurgy alloys and composites, ASm International Publication, USA, 1999, pp. 874.
41 Welsch G, Eloff P C, Eylon D, et al. metallurgical Transactions A, 1983, 14(3),761.
42 Conrad H. Progress in materials Science, 1981, 26(2), 123.
43 Roberson I m, Schaffer G B. Powder metallurgy, 2010, 53(2), 146.
44 Cracken m C. PIm International, 2008, 2(2), 55.
45 Liu Y, Chen L F, Wei W F, et al. Journal of materials Science and Technology, 2006, 22(4),465.
46 Liu Y B, Liu Y, Tang H P, et al. materials and manufacturing Processes, 2010, 25, 735.
47 Froes F H, Eylon D. International materials Reviews 1990, 35(1), 162.
48 Zhang K, mei J, Wan N, et al. metallurgical and materials Transactions A, 2010, 41(4), 1033.
49 mahajan Y R, Eylon D, Kelto C A, et al. Powder metallurgy International,1985,17,75.
50 Weiss I, Froes F H, Eylon D, et al. metallurgical Transactions A, 1986, 17(11), 1935.
51 Senkov O N, Jonas J J, Froes F H. JOm, 1996, 48(7), 42.
52 Fang T Y, Wang W H. materials Chemistry and Physics, 1998, 56(1), 35.
53 ma Qiang. Hunan metallurgy, 1995 (2), 60 (in Chinese).
   马强. 湖南冶金, 1995 (2), 60.
54 Guichard D, Raisson G, Pireeonnet. In: International conference on hot isostatic pressing HIP'02. moscow, 2002, pp. 103.
55 Huang Jinchang. Rare metals and Cemented Carbides, 1988(3), 58(in Chinese).
[1] 康凤, 陈文, 胡传凯, 林军, 夏祥生, 吴洋. 时效参数对Ti12LC钛合金组织及性能的影响[J]. 材料导报, 2019, 33(z1): 326-328.
[2] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[3] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[4] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[5] 刘强, 惠松骁, 宋生印, 叶文君, 于洋. 油气开发用钛合金油井管选材及工况适用性研究进展[J]. 材料导报, 2019, 33(5): 841-853.
[6] 曹聪聪, 李文亚, 杨康, 李成新, 纪纲. 基体硬度和热学性质对冷喷涂TC4钛合金涂层组织和力学性能的影响[J]. 材料导报, 2019, 33(2): 277-282.
[7] 代文杰,潘诗琰,申小平,徐驰,范沧. 介观尺度下液相烧结过程的数值模拟研究进展[J]. 材料导报, 2019, 33(17): 2929-2938.
[8] 王先, 于思荣, 赵严, 张鹏, 刘恩洋, 熊伟. 微弧氧化时间对TA15合金陶瓷膜表面形貌和性能的影响[J]. 材料导报, 2019, 33(12): 2009-2013.
[9] 赵伦, 何晓聪, 张先炼, 丁燕芳, 刘洋, 邓聪. TA1钛合金自冲铆接头力学性能及微动行为[J]. 材料导报, 2018, 32(20): 3579-3583.
[10] 姚罡, 付明杰. TNW700高温钛合金热过程中的相组织变化分析[J]. 材料导报, 2018, 32(20): 3584-3589.
[11] 袁振军, 贺甜甜, 杜三明, 张永振. 硼铁含量对铜基粉末冶金制动材料性能的影响[J]. 材料导报, 2018, 32(18): 3223-3229.
[12] 缪倩倩, 陈海燕, 顾伟, 蒋永锋, 宋亓宁. 钛合金表面阳极微弧等离子体渗硼层的研究[J]. 材料导报, 2018, 32(18): 3161-3165.
[13] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[14] 杨海欧,王健,王冲,魏雷,周颖惠,林鑫. 电弧增材制造TC4钛合金宏观晶粒演化规律[J]. 《材料导报》期刊社, 2018, 32(12): 2028-2031.
[15] 刘莹莹, 陈子勇, 金头男, 柴丽华. 600 ℃高温钛合金发展现状与展望[J]. 《材料导报》期刊社, 2018, 32(11): 1863-1869.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed