Please wait a minute...
材料导报  2023, Vol. 37 Issue (24): 22040186-6    https://doi.org/10.11896/cldb.22040186
  无机非金属及其复合材料 |
晶体硅太阳电池的电化学沉积金属化技术研究进展
王璐1, 黄现礼1,*, 何建平1, 王涛1, 吕俊2, 王建波3
1 南京航空航天大学材料科学与技术学院,南京 210016
2 隆基乐叶光伏科技股份有限公司,江苏 泰州 225300
3 隆基光伏科技股份有限公司,西安 710000
Research Progress on Metallization Technology of Electrochemical Deposition for Crystalline Silicon Solar Cells
WANG Lu1, HUANG Xianli1,*, HE Jianping1, WANG Tao1, LYU Jun2, WANG Jianbo3
1 School of materials science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
2 Longi Solar Technology Co., Ltd., Taizhou 225300, Jiangsu, China
3 Longi Solar Technology Co., Ltd., Xi’an 710000, China
下载:  全 文 ( PDF ) ( 2873KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统丝网印刷作为晶体硅太阳电池的栅极金属化工艺,在现今发展成本低、效率高的太阳电池背景下仍存在很多不足,如金属银价格高,阴影损失大等。近些年,通过电化学沉积过程来实现晶体硅太阳电池片表面金属化被广泛报道。该技术可以在电池片的正反面进行快速的选择性沉积,提高栅极与衬底的结合力的同时也降低了电阻率,并且利用铜替代银,大大降低了太阳电池的成本。本文总结了电化学沉积法制备晶体硅太阳电池片栅极的研究现状和发展趋势,同时介绍了未来该项技术在推广和应用中存在的机遇与挑战。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王璐
黄现礼
何建平
王涛
吕俊
王建波
关键词:  晶体硅太阳电池  电化学沉积  金属化  激光消融  选择性沉积    
Abstract: As the grid metallization process of crystalline silicon solar cells, traditional screen printing has exposed many shortcomings of low-cost and high-efficiency solar cells, which include high silver prices and large shadow loss. Surface metallization of crystalline silicon solar cells by electrochemical deposition has been widely reported. This technology rapidly and selectively deposits on the front and back of solar cells. Grid fabricated in this way not only has excellent adhesion force, but also has low resistivity. In addition, copper replaced silver, which greatly reduced the solar cell cost. This paper summarizes the research status and development tendencies of electrochemical deposition of crystalline silicon solar cell grids, and illustrates opportunities and challenges in promoting this technology in the future.
Key words:  crystalline silicon solar cell    electrochemical deposition    metallization    laser ablation    selective deposition
发布日期:  2023-12-19
ZTFLH:  TB34  
通讯作者:  *黄现礼,南京航空航天大学材料科学与技术学院副教授、硕士研究生导师。2006年哈尔滨工业大学化学工艺专业博士毕业,2009年加入南京航空航天大学应用化学系工作至今。目前主要从事能源材料等方面的研究工作。在Journal of Energy Storage, ACS Applied Materials & Interfaces, Electrochimica Acta等期刊发表论文40余篇。xianlihuang@nuaa.edu.cn   
作者简介:  王璐,2019年6月于金陵科技学院获得工学学士学位。现为南京航空航天大学材料科学与技术学院硕士研究生,在黄现礼副教授和何建平教授的指导下进行研究。目前主要研究领域为晶体硅太阳电池金属化工艺。
引用本文:    
王璐, 黄现礼, 何建平, 王涛, 吕俊, 王建波. 晶体硅太阳电池的电化学沉积金属化技术研究进展[J]. 材料导报, 2023, 37(24): 22040186-6.
WANG Lu, HUANG Xianli, HE Jianping, WANG Tao, LYU Jun, WANG Jianbo. Research Progress on Metallization Technology of Electrochemical Deposition for Crystalline Silicon Solar Cells. Materials Reports, 2023, 37(24): 22040186-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040186  或          http://www.mater-rep.com/CN/Y2023/V37/I24/22040186
1 Metz A, Adler D, Bagus S, et al. Solar Energy Materials and Solar Cells, 2014, 120, 417.
2 Balaji N, Lai D, Shanmugam V, et al. Solar Energy, 2021, 214, 101.
3 Wang S, Mai L, Wenham A, et al. Solar Energy Materials and Solar Cells, 2017, 169, 151.
4 Wang S, Mai L, Ciesla A, et al. Solar Energy Materials and Solar Cells, 2019, 193, 403.
5 Bao S, Yang L, Huang J, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(4), 4045.
6 Chang N L, Poduval G K, Sang B, et al. Progress in Photovoltaics:Research and Applications. 2022, 1, DOI:10. 1002/pip. 3553.
7 Lozac’h M, Nunomura S, Matsubara K. Solar Energy Materials and Solar Cells, 2020, 207, 110357.
8 Wang P, Sridharan R, Ng X R, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110834.
9 Dabirian A, Lachowicz A, Schüttauf J W, et al. Solar Energy Materials and Solar Cells, 2017, 159, 243.
10 Kamp M, Bartsch J, Nold S, et al. Energy Procedia, 2011, 8, 558.
11 Grübel B, Cimiotti G, Schmiga C, et al. Progress in Photovoltaics:Research and Applications, 2021, 30(6), 615.
12 Dang C, Labie R, Simoen E, et al. Solar Energy Materials and Solar Cells, 2018, 184, 57.
13 Anuar M a N, Mohd Amin N L, Fadil n A. Advances in Materials and Processing Technologies, 2020, 7(1), 117.
14 Beaucarne G, Schubert G, Hoornstra J. Energy Procedia, 2015, 67, 2.
15 Beaucarne G, Schubert G, Tous L, et al. Energy Procedia, 2016, 98, 2.
16 Hsan Wu H. International Journal of Electrochemical Science, 2020, 15, 5277.
17 Kim A, Lee S J, Choi E, et al. Metals and Materials International, 2016, 20(4), 775.
18 Mondon A, Wang D, Zuschlag A, et al. Applied Surface Science, 2014, 323, 31.
19 Rahman M K, Nemouchi F, Chevolleau T, et al. Materials Science in Semiconductor Processing, 2017, 71, 470.
20 Bartsch J, Mondon A, Schetter C, et al. In:35th Ieee Photovoltaic Specialists Conference. Honolulu, 2010, pp. 1299.
21 Gas P. Applied Surface Science, 1989, 38(4), 178.
22 Hong S Q, Comrie C M, Russell S W, et al. Journal of Applied Physics, 1991, 70(7), 3655.
23 Tous L, Russell R, Das J, et al. Energy Procedia, 2012, 21, 58.
24 Hsiao C H, Wu J Y, Chen W J. Journal of Materials Science:Materials in Electronics, 2019, 30(4), 3539.
25 ur Rehman A, Lee S H, Bhopal M F, et al. Electronic Materials Letters, 2016, 12(4), 439.
26 Kluska S, Fleischmann C, Büchler A, et al. Solar Energy Materials and Solar Cells, 2014, 120, 323.
27 Arya V, Steinhauser B, Gruebel B, et al. Physica Status Solidi (A), 2020, 217(24), 2000474.
28 Grubel B, Cimiotti G, Schmiga C, et al. IEEE Journal of Photovoltaics, 2021, 11(3), 584.
29 Kluska S, Bartsch J, Büchler A, et al. Energy Procedia, 2015, 77, 733.
30 Wrobel E, Kowalik P, Mazurkiewicz J. Microelectronics International, 2015, 32(1), 1.
31 Kowalik P, Wrobel E, Mazurkiewicz J. Microelectronics International, 2019, 36(2), 83.
32 Lee S H. Solar Energy, 2009, 83(8), 1285.
33 Heinrich G, Bähr M, Stolberg K, et al. Energy Procedia, 2011, 8, 592.
34 Heinrich G, Hšger I, BŠhr M, et al. Energy Procedia, 2012, 27, 491.
35 Heinrich G, Lawerenz A. Solar Energy Materials and Solar Cells, 2014, 120, 317.
36 Molto C, Lee J E, Nekarda J, et al. Solar Energy Materials and Solar Cells, 2019, 202, 110149.
37 Bonse J, Baudach S, Krüger J, et al. Applied Physics A, 2014, 74(1), 19.
38 Chicbkov B N, Momma C, Nolte S, et al. Applied Physics A, 1996, 63, 109.
39 Aleem M, Karuppanan K K, Raghu A V, et al. Advanced Engineering Materials, 2019, 21(12), 1900734.
40 Haase F, Hollemann C, Schäfer S, et al. Solar Energy Materials and Solar Cells, 2018, 186, 184.
41 Büchler A, Kluska S, Meyer F, et al. Solar Energy Materials and Solar Cells, 2017, 166, 197.
42 Du Z, Zhang C, Li F, et al. IEEE Journal of Photovoltaics, 2016, 6(3), 617.
43 Bajpai V K, Pant P, Solanki C S. Solar Energy, 2017, 155, 62.
44 Gill T M, Zhao J, Berenschot E J W, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22834.
45 To A, Zhang T, Hoex B, et al. In:2018 Ieee 7th World Conference on Photovoltaic Energy Conversion (Wcpec) (a Joint Conference of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec). Waikoloa, 2018, pp. 1066.
46 Shin E G, Rehman A, Lee S H, et al. J Nanosci Nanotechnol, 2015, 15(10), 7823.
47 Buchler A, Grubel B, Arya V, et al. IEEE Journal of Photovoltaics, 2019, 9(6), 1532.
48 Takaloo A V, Joo S K, Es F, et al. Journal of the Korean Physical Society, 2018, 72(5), 615.
49 Mette A, Schetter C, Wissen D, et al. In:Conference Record of the 2006 Ieee 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2. Waikoloa, 2006, pp. 1056.
50 Li T, Wang W. Japanese Journal of Applied Physics, 2016, 55(10), 102303.
51 Min S K, Kim D H, Lee S H. Electronic Materials Letters, 2013, 9(4), 433.
52 Chang Y, Wang S, Deng R, et al. Solar Energy Materials and Solar Cells, 2022, 235, 111445.
53 Lee S H, Lee D W, Lim K J, et al. Electronic Materials Letters, 2019, 15(3), 314.
54 Grubel B, Theil G C, Roder S, et al. IEEE Journal of Photovoltaics, 2020, 10(2), 444.
55 Recamán Payo M, Li Y, Russell R, et al. Solar Energy Materials and Solar Cells, 2020, 204, 110173.
[1] 杜伟, 强军锋, 余竹焕, 高炜, 阎亚雯, 王晓慧, 刘旭亮. 电子封装用纳米复合焊膏的研究进展[J]. 材料导报, 2023, 37(19): 22010113-11.
[2] 吴强, 张薇, 余创, 程时杰, 谢佳. 高硫含量正极在锂硫电池中的研究进展[J]. 材料导报, 2023, 37(15): 21100175-15.
[3] 王楠, 白晶莹, 李家峰, 冯立, 徐俊杰, 赫艳龙, 董俊伟, 崔庆新, 张立功. 聚酰亚胺薄膜表面导电金属层化学沉积技术研究[J]. 材料导报, 2022, 36(22): 22030280-6.
[4] 胡坤, 郭锦, 张敏刚, 连晋毅, 张怡轩, 李占龙. 金属化合物在锂硫电池正极材料及夹层中的应用[J]. 材料导报, 2022, 36(19): 21010010-11.
[5] 金胜男, 孙婷婷, 王明辉, 江莞. 电化学沉积法制备PEDOT/PEDOT∶PSS基柔性纳米纤维膜及其热电性能[J]. 材料导报, 2020, 34(8): 8184-8187.
[6] 李小康, 朱思聪, 张仁刚, 彭顺金. 一种低能带隙结晶完整的D-A型共轭导电聚合物电化学沉积与表征[J]. 材料导报, 2020, 34(20): 20147-20151.
[7] 王剑豪, 薛松柏, 吕兆萍, 王刘珏, 刘晗. 纳米颗粒增强无铅钎料的研究进展[J]. 材料导报, 2019, 33(13): 2133-2145.
[8] 傅瑜,何俊宝,张萍,冷玉敏,马奔原,李纪燕. 过渡金属铋化物BaAg2-δBi2单晶的制备和物理性质[J]. 《材料导报》期刊社, 2018, 32(12): 2043-2046.
[9] 王慧华, 徐英君, 蒋坤, 葛彬, 屈天鹏, 王德永. 外电场作用下熔渣对MgO-C耐火材料的侵蚀行为*[J]. 《材料导报》期刊社, 2017, 31(20): 96-100.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed