Research Progress on Metallization Technology of Electrochemical Deposition for Crystalline Silicon Solar Cells
WANG Lu1, HUANG Xianli1,*, HE Jianping1, WANG Tao1, LYU Jun2, WANG Jianbo3
1 School of materials science and technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China 2 Longi Solar Technology Co., Ltd., Taizhou 225300, Jiangsu, China 3 Longi Solar Technology Co., Ltd., Xi’an 710000, China
Abstract: As the grid metallization process of crystalline silicon solar cells, traditional screen printing has exposed many shortcomings of low-cost and high-efficiency solar cells, which include high silver prices and large shadow loss. Surface metallization of crystalline silicon solar cells by electrochemical deposition has been widely reported. This technology rapidly and selectively deposits on the front and back of solar cells. Grid fabricated in this way not only has excellent adhesion force, but also has low resistivity. In addition, copper replaced silver, which greatly reduced the solar cell cost. This paper summarizes the research status and development tendencies of electrochemical deposition of crystalline silicon solar cell grids, and illustrates opportunities and challenges in promoting this technology in the future.
王璐, 黄现礼, 何建平, 王涛, 吕俊, 王建波. 晶体硅太阳电池的电化学沉积金属化技术研究进展[J]. 材料导报, 2023, 37(24): 22040186-6.
WANG Lu, HUANG Xianli, HE Jianping, WANG Tao, LYU Jun, WANG Jianbo. Research Progress on Metallization Technology of Electrochemical Deposition for Crystalline Silicon Solar Cells. Materials Reports, 2023, 37(24): 22040186-6.
1 Metz A, Adler D, Bagus S, et al. Solar Energy Materials and Solar Cells, 2014, 120, 417. 2 Balaji N, Lai D, Shanmugam V, et al. Solar Energy, 2021, 214, 101. 3 Wang S, Mai L, Wenham A, et al. Solar Energy Materials and Solar Cells, 2017, 169, 151. 4 Wang S, Mai L, Ciesla A, et al. Solar Energy Materials and Solar Cells, 2019, 193, 403. 5 Bao S, Yang L, Huang J, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(4), 4045. 6 Chang N L, Poduval G K, Sang B, et al. Progress in Photovoltaics:Research and Applications. 2022, 1, DOI:10. 1002/pip. 3553. 7 Lozac’h M, Nunomura S, Matsubara K. Solar Energy Materials and Solar Cells, 2020, 207, 110357. 8 Wang P, Sridharan R, Ng X R, et al. Solar Energy Materials and Solar Cells, 2021, 220, 110834. 9 Dabirian A, Lachowicz A, Schüttauf J W, et al. Solar Energy Materials and Solar Cells, 2017, 159, 243. 10 Kamp M, Bartsch J, Nold S, et al. Energy Procedia, 2011, 8, 558. 11 Grübel B, Cimiotti G, Schmiga C, et al. Progress in Photovoltaics:Research and Applications, 2021, 30(6), 615. 12 Dang C, Labie R, Simoen E, et al. Solar Energy Materials and Solar Cells, 2018, 184, 57. 13 Anuar M a N, Mohd Amin N L, Fadil n A. Advances in Materials and Processing Technologies, 2020, 7(1), 117. 14 Beaucarne G, Schubert G, Hoornstra J. Energy Procedia, 2015, 67, 2. 15 Beaucarne G, Schubert G, Tous L, et al. Energy Procedia, 2016, 98, 2. 16 Hsan Wu H. International Journal of Electrochemical Science, 2020, 15, 5277. 17 Kim A, Lee S J, Choi E, et al. Metals and Materials International, 2016, 20(4), 775. 18 Mondon A, Wang D, Zuschlag A, et al. Applied Surface Science, 2014, 323, 31. 19 Rahman M K, Nemouchi F, Chevolleau T, et al. Materials Science in Semiconductor Processing, 2017, 71, 470. 20 Bartsch J, Mondon A, Schetter C, et al. In:35th Ieee Photovoltaic Specialists Conference. Honolulu, 2010, pp. 1299. 21 Gas P. Applied Surface Science, 1989, 38(4), 178. 22 Hong S Q, Comrie C M, Russell S W, et al. Journal of Applied Physics, 1991, 70(7), 3655. 23 Tous L, Russell R, Das J, et al. Energy Procedia, 2012, 21, 58. 24 Hsiao C H, Wu J Y, Chen W J. Journal of Materials Science:Materials in Electronics, 2019, 30(4), 3539. 25 ur Rehman A, Lee S H, Bhopal M F, et al. Electronic Materials Letters, 2016, 12(4), 439. 26 Kluska S, Fleischmann C, Büchler A, et al. Solar Energy Materials and Solar Cells, 2014, 120, 323. 27 Arya V, Steinhauser B, Gruebel B, et al. Physica Status Solidi (A), 2020, 217(24), 2000474. 28 Grubel B, Cimiotti G, Schmiga C, et al. IEEE Journal of Photovoltaics, 2021, 11(3), 584. 29 Kluska S, Bartsch J, Büchler A, et al. Energy Procedia, 2015, 77, 733. 30 Wrobel E, Kowalik P, Mazurkiewicz J. Microelectronics International, 2015, 32(1), 1. 31 Kowalik P, Wrobel E, Mazurkiewicz J. Microelectronics International, 2019, 36(2), 83. 32 Lee S H. Solar Energy, 2009, 83(8), 1285. 33 Heinrich G, Bähr M, Stolberg K, et al. Energy Procedia, 2011, 8, 592. 34 Heinrich G, Hšger I, BŠhr M, et al. Energy Procedia, 2012, 27, 491. 35 Heinrich G, Lawerenz A. Solar Energy Materials and Solar Cells, 2014, 120, 317. 36 Molto C, Lee J E, Nekarda J, et al. Solar Energy Materials and Solar Cells, 2019, 202, 110149. 37 Bonse J, Baudach S, Krüger J, et al. Applied Physics A, 2014, 74(1), 19. 38 Chicbkov B N, Momma C, Nolte S, et al. Applied Physics A, 1996, 63, 109. 39 Aleem M, Karuppanan K K, Raghu A V, et al. Advanced Engineering Materials, 2019, 21(12), 1900734. 40 Haase F, Hollemann C, Schäfer S, et al. Solar Energy Materials and Solar Cells, 2018, 186, 184. 41 Büchler A, Kluska S, Meyer F, et al. Solar Energy Materials and Solar Cells, 2017, 166, 197. 42 Du Z, Zhang C, Li F, et al. IEEE Journal of Photovoltaics, 2016, 6(3), 617. 43 Bajpai V K, Pant P, Solanki C S. Solar Energy, 2017, 155, 62. 44 Gill T M, Zhao J, Berenschot E J W, et al. ACS Applied Materials & Interfaces, 2018, 10(26), 22834. 45 To A, Zhang T, Hoex B, et al. In:2018 Ieee 7th World Conference on Photovoltaic Energy Conversion (Wcpec) (a Joint Conference of 45th Ieee Pvsc, 28th Pvsec & 34th Eu Pvsec). Waikoloa, 2018, pp. 1066. 46 Shin E G, Rehman A, Lee S H, et al. J Nanosci Nanotechnol, 2015, 15(10), 7823. 47 Buchler A, Grubel B, Arya V, et al. IEEE Journal of Photovoltaics, 2019, 9(6), 1532. 48 Takaloo A V, Joo S K, Es F, et al. Journal of the Korean Physical Society, 2018, 72(5), 615. 49 Mette A, Schetter C, Wissen D, et al. In:Conference Record of the 2006 Ieee 4th World Conference on Photovoltaic Energy Conversion, Vols 1 and 2. Waikoloa, 2006, pp. 1056. 50 Li T, Wang W. Japanese Journal of Applied Physics, 2016, 55(10), 102303. 51 Min S K, Kim D H, Lee S H. Electronic Materials Letters, 2013, 9(4), 433. 52 Chang Y, Wang S, Deng R, et al. Solar Energy Materials and Solar Cells, 2022, 235, 111445. 53 Lee S H, Lee D W, Lim K J, et al. Electronic Materials Letters, 2019, 15(3), 314. 54 Grubel B, Theil G C, Roder S, et al. IEEE Journal of Photovoltaics, 2020, 10(2), 444. 55 Recamán Payo M, Li Y, Russell R, et al. Solar Energy Materials and Solar Cells, 2020, 204, 110173.