Please wait a minute...
材料导报  2023, Vol. 37 Issue (22): 22020042-7    https://doi.org/10.11896/cldb.22020042
  无机非金属及其复合材料 |
腐植酸基活性炭对亚甲基蓝的吸附性能研究
侯金瑛, 董宪姝*, 马晓敏, 樊玉萍, 姚素玲
太原理工大学矿业工程学院,太原 030024
Study on the Adsorption Performance of Humic Acid-based Activated Carbon for Methylene Blue
HOU Jinying, DONG Xianshu*, MA Xiaomin, FAN Yuping, YAO Suling
College of Mining Engineering, Taiyuan University of Technology, Taiyuan 030024, China
下载:  全 文 ( PDF ) ( 8356KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 煤质腐植酸是低阶煤中的一种天然芳香族聚合物,具有高碳含量、松散的海绵质地、资源丰富、成本低廉等特性,是制备活性炭的新型碳前驱体。本工作以褐煤提取的腐植酸为前驱体,采用化学活化法制得腐植酸基活性炭,研究其对亚甲基蓝的吸附性能。利用扫描电子显微镜、BET比表面仪、傅里叶红外光谱仪对活性炭的物理化学性质进行表征。考察了溶液pH、吸附剂用量、初始浓度、温度和离子强度对活性炭吸附性能的影响。结果表明,腐植酸基活性炭具有大的比表面积(2 370.21 m2/g)、丰富的孔结构以及含氧官能团,有利于亚甲基蓝的吸附。Langmuir模型能够准确地描述活性炭对亚甲基蓝的吸附行为,根据Langmuir等温模型拟合,298 K时活性炭对亚甲基蓝的最大吸附量为970.87 mg/g。对比不同前驱体制备的活性炭亚甲基蓝的吸附性能,由腐植酸制备的活性炭对亚甲基蓝表现出明显良好的吸附性能。伪二级动力学模型更能描述亚甲基蓝在活性炭上的吸附。活性炭对亚甲基蓝的吸附是自发的吸热过程。经过五次循环使用,吸附量有所减小,但去除率均达到了93%以上,活性炭循环使用性能良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
侯金瑛
董宪姝
马晓敏
樊玉萍
姚素玲
关键词:  褐煤  腐植酸基活性炭  吸附  亚甲基蓝    
Abstract: Coal humic acid is a natural aromatic polymer in low-rank coal and has the characteristics of high carbon content, loose sponge texture, abundant reserves and low cost, etc., which makes it a new carbon precursor for the preparation of activated carbon. In this paper, humic acid-based activated carbon was prepared by chemical activation method using humic acid extracted from lignite as precursor, and its adsorption performance on methylene blue was studied. The physical and chemical properties of the activated carbon were characterized by scanning electron microscopy, BET surface spectrometer and Fourier transform infrared spectrometer. The effects of solution pH, adsorbent dosage, initial concentration, temperature and ionic strength on the adsorption performance of activated carbon were investigated. The results show that the humic acid-based activated carbon had a large specific surface area (2 370.21 m2/g), rich pore structure and oxygen-containing functional groups, which were beneficial to the adsorption of methylene blue. The Langmuir model was more suitable to describe the adsorption behavior of activated carbon on methylene blue. According to the Langmuir isotherm model fitting, the maximum adsorption capacity of activated carbon on methylene blue at 298 K was 970.87 mg/g. Compared with the adsorption properties of activated carbon methylene blue prepared from different precursors, the activated carbon prepared from humic acid showed obviously good adsorption properties for methylene blue. The pseudo-second-order kinetic model could better describe the adsorption of methylene blue on activated carbon. The adsorption of methylene blue by activated carbon was a spontaneous and endothermic process. After 5 cycles of recycling, the adsorption capacity of activated carbon on methylene blue has decreased, but the removal rate of activated carbon in the recycling reached more than 93%, indicating that the recycling performance of activated carbon was good.
Key words:  lignite    humic acid-based activated carbon    adsorption    methylene blue
出版日期:  2023-11-25      发布日期:  2023-11-21
ZTFLH:  X751  
基金资助: 国家自然科学基金国际(地区)合作与交流项目(51820105006);山西省自然科学基金面上基金项目(201901D111075);山西省留学回国人员科技活动择优资助项目
通讯作者:  * 董宪姝,太原理工大学矿业工程学院教授、博士研究生导师。目前主要从事矿物加工理论、工艺与设备的研发,煤炭脱硫及伴生矿物的高值化利用等研究和教学工作。现主持国家自然科学基金-国际(地区)合作与交流项目1项、国家自然科学基金1项、山西省重点研发-国际科技合作项目1项,参与国家自然青年基金2项、山西省自然科学基金青年基金项目1项,承担企业科技合作项目30余项。发表论文90余篇,包括Fuel、Mineral Engineering、Colloids and Surfaces A-Physicochemical and Engineering Aspects等。授权发明专利10余项,参与制定选煤标准2项。dxshu520@163.com   
作者简介:  侯金瑛,2013年6月、2016年6月分别于沈阳理工大学和太原理工大学获得理学学士学位和工学硕士学位。现为太原理工大学矿业工程学院博士研究生,在董宪姝教授的指导下进行研究。目前主要研究领域为矿物材料及水处理。
引用本文:    
侯金瑛, 董宪姝, 马晓敏, 樊玉萍, 姚素玲. 腐植酸基活性炭对亚甲基蓝的吸附性能研究[J]. 材料导报, 2023, 37(22): 22020042-7.
HOU Jinying, DONG Xianshu, MA Xiaomin, FAN Yuping, YAO Suling. Study on the Adsorption Performance of Humic Acid-based Activated Carbon for Methylene Blue. Materials Reports, 2023, 37(22): 22020042-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020042  或          http://www.mater-rep.com/CN/Y2023/V37/I22/22020042
1 Hao S J, Zhang L P. China Textile Leader, 2017(11), 64 (in Chinese).
郝士杰, 张丽平. 纺织导报, 2017(11), 64.
2 Pei L J, Shi W H, Zhang H J, et al. Journal of Textile Research, 2022, 43(1), 122 (in Chinese).
裴刘军, 施文华, 张红娟, 等. 纺织学报, 2022, 43(1), 122.
3 Wang C. Fine and Specialty Chemicals, 2015, 23(12), 1 (in Chinese).
王晨. 精细与专用化学品, 2015, 23(12), 1.
4 Huang T, Chen G, Liang E D, et al. Transactions of China Pulp and Paper, 2007, 22(1), 68 (in Chinese).
黄婷, 陈港, 梁二东, 等. 中国造纸学报, 2007, 22(1), 68.
5 Zhang Q, Liang T Y, Liu J, et al. China Leather, 2018, 47(8), 14 (in Chinese).
张奇, 梁天宇, 刘军, 等. 中国皮革, 2018, 47(8), 14.
6 Dawood S, Sen T K, Phan C. Water Air & Soil Pollution, 2014, 225, 1818.
7 Nava J L, Quiroz M A, Martínez-Huitle C A. Journal of the Mexican Chemical Society, 2008, 52(4), 249.
8 Field M S, Wilhelm R G, Quinlan J F, et al. Environmental Monitoring and Assessment, 1995, 38(1), 75.
9 He L M, Tebo B M. Applied & Environmental Microbiology, 1998, 64(3), 1123.
10 Morgan-Sagastume J M, Jiménez B, Noyola A. Environmental Technology, 1997, 18(8), 817.
11 Hsu T C, Chiang C S. Journal of Environmental Science & Health Part A, 1997, 32(7), 1921.
12 Samsami S, Mohamadizaniani M, Sarrafzadeh M H, et al. Process Safety and Environmental Protection, 2020, 143, 138.
13 Rauf M A, Ashraf S S. Chemical Engineering Journal, 2012, 209, 520.
14 Yang Y W, Zhou T L, Qiao Q C, et al. Journal of China University of Mining & Technology, 2007, 17(1), 96.
15 Chen L, Li Y H, Du Q J, et al. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2017, 155, 345.
16 Wu Y J, Zhang L J, Gao C L, et al. Journal of Chemical and Engineering Data, 2009, 54, 3229.
17 Gong B L. Methylene blue removal by coupling BC adsorption with TiO2 photodegradation. Master's Thesis, East China Normal University, China, 2009 (in Chinese).
龚兵丽. 吸附光催化联合处理亚甲基蓝的研究. 硕士学位论文, 华东师范大学, 2009.
18 Alver E, Metin A Ü, Brouers F. International Journal of Biological Macromolecules, 2020, 154, 104.
19 Zheng Y, Zhou X Y, Ling H, et al. Industrial Water Treatment, 2020, 40(10), 99 (in Chinese).
郑莹, 周小雨, 凌海, 等. 工业水处理, 2020, 40(10), 99.
20 Shao Y, Guo M, Sun Y T, et al. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4),679 (in Chinese).
邵燕, 郭明, 孙雨婷, 等. 高校化学工程学报, 2023, 37(4),679.
21 Zhang C L, Han E S, Teng H K, et al. Industrial Water Treatment, 2020, 40(5), 44 (in Chinese).
张程蕾, 韩恩山, 滕厚开, 等. 工业水处理, 2020, 40(5), 44.
22 Qadeer R. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 293(1-3), 217.
23 Liu X M, Deng X L, Zhu G Z. Biomass Chemical Engineering, 2010, 44(6), 52 (in Chinese).
刘晓敏, 邓先伦, 朱光真. 生物质化学工程, 2010, 44(6), 52.
24 Kosheleva R I, Mitropoulos A C, Kyzas G Z. Environmental Chemistry Letters, 2018, 17(1), 429.
25 Yousefi M, Arami S M, Takallo H, et al. Human and Ecological Risk Assessment, 2018, 25(3), 1508.
26 Heidarinejad Z, Dehghani M H, Heidari M, et al. Environmental Che-mistry Letters, 2020, 18, 393.
27 Wen K Y, Li H Y, Cui J G, et al. Industrial Water Treatment, 2021, 41(2), 62 (in Chinese).
温凯云, 李红艳, 崔建国, 等. 工业水处理, 2021, 41(2), 62.
28 Xie W T, Yang Y S, Tang M C, et al. Industrial Water Treatment, 2020, 40(7), 87 (in Chinese).
谢婉婷, 杨耀森, 唐谋程, 等. 工业水处理, 2020, 40(7), 87.
29 Powell C, Beall G W. Current Opinion in Colloid & Interface Science, 2015, 20(5-6), 362.
30 Strydom C A, Bunt J R, Schobert H H, et al. Fuel Processing Technology, 2011, 92(4), 764.
31 Zhang Y Q. Preparation and characteristics of different lignite humic acids. Master's Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese).
张远琴. 不同褐煤腐植酸的制备及其特性研究. 硕士学位论文, 昆明理工大学, 2021.
32 Xu S. Study on the adsorption mechanism of heavy metals and the preparation adsorption materials of ramie stalk. Ph. D. Thesis, Nanchang University, China, 2016 (in Chinese).
徐升. 苎麻麻骨吸附重金属机理及吸附材料的制备[D]. 博士学位论文, 南昌大学, 2016.
33 Kubra K T, Salman M S, Hasan M N. Journal of Molecular Liquids, 2021, 328, 115468.
34 Singh K P, Mohan D, Sinha S, et al. Industrial & Engineering Chemistry Research, 2003, 42(9), 1965.
35 Doan M, Alkan M. Chemosphere, 2003, 50(4), 517.
36 Senthilkumaar S, Kalaamani P, Subburaam C V, et al. Journal of Ha-zardous Materials, 2006, 136(3), 800.
37 Yang P X. In: Chinese Water Pollution Control Technology and Equipment. Tianjin, 1998 (in Chinese).
杨蒲仙. 中国水污染防治技术装备. 天津, 1998.
38 Zhang S P, Liu J H, Sun Y. In:Proceedings of the 9th National Biochemical Conference. Beijing, 2000 (in Chinese).
张松平, 刘建华, 孙彦. 第九届全国生物化工学术会议. 北京, 2000.
39 Wang J, Guo X. Chemosphere, 2020, 258, 127279.
40 Webber T W, Chakkravorti R K. AIChE Journal, 1974, 20, 228.
41 Mehmet D, Alkan M, Özkan D, et al. Chemical Engineering Journal, 2006, 124(1-3), 89.
42 Ho Y S. Water Research, 2006, 40(1), 119.
43 Duman O, Ayranci E. Journal of Hazardous Materials, 2010, 174(1-3), 359.
44 Fu Y Y. Preparation of onion-like carbon composites and their adsorption and degradation properties for organic dyes. Ph. D. Thesis, University of Chinese Academy of Science, 2020 (in Chinese).
付耀耀. 纳米洋葱碳复合材料的制备及其吸附和降解有机染料性能研究. 博士学位论文, 中国科学院大学, 2020.
45 Escudero C, Fiol N, Villaescusa I, et al. Journal of Hazardous Materials, 2009, 164(2-3), 533.
46 Ai L, Zhang C, Chen Z. Journal of Hazardous Materials, 2011, 192(3), 1515.
47 Sriramoju S K, Dash P S, Majumdar S. Journal of Environmental Chemical Engineering, 2021, 9(1), 104784.
48 Gokce Y, Yaglikci S, Yagmur E, et al. Journal of Environmental Chemical Engineering, 2020, 9(2), 104819.
49 Niu T X, Zhou J W, Zhang C, et al. RSC Advances, 2018, 8(47), 26978.
50 Purevsuren B, Liou Y H, Davaajav Y, et al. Journal of the Chinese Institute of Engineers, 2017, 40(4), 355.
51 Feng Q, Xu R S, Li M, et al. Inorganic Chemicals Industry, 2021, 53(12), 122 (in Chinese).
冯倩, 徐荣声, 李梅, 等. 无机盐工业, 2021, 53(12), 122.
52 Liu L X, Ma Y B, Liu Z, et al. Industrial Water Treatment, 2021, 41(6), 252 (in Chinese).
刘连鑫, 马彦彪, 刘哲, 等. 工业水处理, 2021, 41(6), 252.
53 Wang J, Han Q N, Lei Y T, et al. CIESC Journal, 2021, 72(5), 2826 (in Chinese).
王晶, 韩巧宁, 雷以廷, 等. 化工学报, 2021, 72(5), 2826.
54 Bediako J K, Lin S, Sarkar A K, et al. Environmental Science and Pollution Research, 2020, 27(2), 1053.
55 Cai J X, Feng L, Kang J, et al. Fresenius Environmental Bulletin, 2013, 22(9), 2547.
56 Li Y L, Li L P, Yin J, et al. Chinese Journal of Environmental Engineering, 2013, 7(8), 3059 (in Chinese).
李依丽, 李利平, 尹晶, 等. 环境工程学报, 2013, 7(8), 3059.
[1] 周爱玲, 贾爱忠, 赵新强, 王延吉. 污水重金属离子选择性吸附的研究进展[J]. 材料导报, 2023, 37(9): 21110052-10.
[2] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[3] 李娅, 马飞跃, 张明, 涂行浩, 杜丽清. 不同尺寸改性果胶基磁性微球的制备及对Pb2+吸附性能的研究[J]. 材料导报, 2023, 37(9): 21050165-8.
[4] 李贞, 刘加平, 乔敏, 于诚, 谢惟肖, 陈俊松. 基于减水剂吸附行为的再生微粉-水泥浆体黏度调控机理研究[J]. 材料导报, 2023, 37(8): 21090090-7.
[5] 王歆銘, 马晓宇, 崔素萍, 王剑锋, 王亚丽, 马骥堃. 钢渣内部金属氧化物调控提高干法脱硫性能研究[J]. 材料导报, 2023, 37(8): 21090022-4.
[6] 吴肖, 魏新莉, 赵栋, 翟文翔, 李旺. 栓皮栎软木分级多孔活性炭的制备及对亚甲基蓝的吸附[J]. 材料导报, 2023, 37(8): 21090088-7.
[7] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[8] 陶正凯, 荆肇乾, 王郑. 纳米纤维素材料在重金属废水治理中的应用[J]. 材料导报, 2023, 37(6): 21030120-8.
[9] 宋学锋, 陆伟宁. 转化方式对粉煤灰地聚物原位转化沸石及其Pb2+吸附性能的影响[J]. 材料导报, 2023, 37(6): 21070249-7.
[10] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[11] 石现兵, 王涛, 吕明泽, 赵晋, 韩振邦. 树枝状PVDF纳米纤维膜负载TiO2吸附-光催化降解染料废水[J]. 材料导报, 2023, 37(4): 21060080-6.
[12] 鲁浩, 杨强, 孔赟. 金属有机框架材料对水体中有机污染物的吸附去除及氧化降解研究进展[J]. 材料导报, 2023, 37(4): 22060239-13.
[13] 刘斌, 王文庆, 于知非, 汤晶, 李正心, 刘天中, 苏革. 氧化石墨烯/氧化铟/两性离子丙烯酸氟化聚合物复合膜的制备及抗牛血清白蛋白性能[J]. 材料导报, 2023, 37(4): 21010165-8.
[14] 宋丽红, 张敏刚, 曹翔宇, 郭锦, 闫晓燕. S-N掺杂聚乙二醇用于锂硫电池的第一性原理研究[J]. 材料导报, 2023, 37(3): 21030173-5.
[15] 刘珊, 廖磊, 魏莉, 李炫妮, 曹磊, 王鑫. 壳聚糖交联腐殖酸凝胶球吸附渗滤液中重金属离子研究[J]. 材料导报, 2023, 37(3): 21040317-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed