Abstract: Coal humic acid is a natural aromatic polymer in low-rank coal and has the characteristics of high carbon content, loose sponge texture, abundant reserves and low cost, etc., which makes it a new carbon precursor for the preparation of activated carbon. In this paper, humic acid-based activated carbon was prepared by chemical activation method using humic acid extracted from lignite as precursor, and its adsorption performance on methylene blue was studied. The physical and chemical properties of the activated carbon were characterized by scanning electron microscopy, BET surface spectrometer and Fourier transform infrared spectrometer. The effects of solution pH, adsorbent dosage, initial concentration, temperature and ionic strength on the adsorption performance of activated carbon were investigated. The results show that the humic acid-based activated carbon had a large specific surface area (2 370.21 m2/g), rich pore structure and oxygen-containing functional groups, which were beneficial to the adsorption of methylene blue. The Langmuir model was more suitable to describe the adsorption behavior of activated carbon on methylene blue. According to the Langmuir isotherm model fitting, the maximum adsorption capacity of activated carbon on methylene blue at 298 K was 970.87 mg/g. Compared with the adsorption properties of activated carbon methylene blue prepared from different precursors, the activated carbon prepared from humic acid showed obviously good adsorption properties for methylene blue. The pseudo-second-order kinetic model could better describe the adsorption of methylene blue on activated carbon. The adsorption of methylene blue by activated carbon was a spontaneous and endothermic process. After 5 cycles of recycling, the adsorption capacity of activated carbon on methylene blue has decreased, but the removal rate of activated carbon in the recycling reached more than 93%, indicating that the recycling performance of activated carbon was good.
通讯作者:
* 董宪姝,太原理工大学矿业工程学院教授、博士研究生导师。目前主要从事矿物加工理论、工艺与设备的研发,煤炭脱硫及伴生矿物的高值化利用等研究和教学工作。现主持国家自然科学基金-国际(地区)合作与交流项目1项、国家自然科学基金1项、山西省重点研发-国际科技合作项目1项,参与国家自然青年基金2项、山西省自然科学基金青年基金项目1项,承担企业科技合作项目30余项。发表论文90余篇,包括Fuel、Mineral Engineering、Colloids and Surfaces A-Physicochemical and Engineering Aspects等。授权发明专利10余项,参与制定选煤标准2项。dxshu520@163.com
侯金瑛, 董宪姝, 马晓敏, 樊玉萍, 姚素玲. 腐植酸基活性炭对亚甲基蓝的吸附性能研究[J]. 材料导报, 2023, 37(22): 22020042-7.
HOU Jinying, DONG Xianshu, MA Xiaomin, FAN Yuping, YAO Suling. Study on the Adsorption Performance of Humic Acid-based Activated Carbon for Methylene Blue. Materials Reports, 2023, 37(22): 22020042-7.
1 Hao S J, Zhang L P. China Textile Leader, 2017(11), 64 (in Chinese). 郝士杰, 张丽平. 纺织导报, 2017(11), 64. 2 Pei L J, Shi W H, Zhang H J, et al. Journal of Textile Research, 2022, 43(1), 122 (in Chinese). 裴刘军, 施文华, 张红娟, 等. 纺织学报, 2022, 43(1), 122. 3 Wang C. Fine and Specialty Chemicals, 2015, 23(12), 1 (in Chinese). 王晨. 精细与专用化学品, 2015, 23(12), 1. 4 Huang T, Chen G, Liang E D, et al. Transactions of China Pulp and Paper, 2007, 22(1), 68 (in Chinese). 黄婷, 陈港, 梁二东, 等. 中国造纸学报, 2007, 22(1), 68. 5 Zhang Q, Liang T Y, Liu J, et al. China Leather, 2018, 47(8), 14 (in Chinese). 张奇, 梁天宇, 刘军, 等. 中国皮革, 2018, 47(8), 14. 6 Dawood S, Sen T K, Phan C. Water Air & Soil Pollution, 2014, 225, 1818. 7 Nava J L, Quiroz M A, Martínez-Huitle C A. Journal of the Mexican Chemical Society, 2008, 52(4), 249. 8 Field M S, Wilhelm R G, Quinlan J F, et al. Environmental Monitoring and Assessment, 1995, 38(1), 75. 9 He L M, Tebo B M. Applied & Environmental Microbiology, 1998, 64(3), 1123. 10 Morgan-Sagastume J M, Jiménez B, Noyola A. Environmental Technology, 1997, 18(8), 817. 11 Hsu T C, Chiang C S. Journal of Environmental Science & Health Part A, 1997, 32(7), 1921. 12 Samsami S, Mohamadizaniani M, Sarrafzadeh M H, et al. Process Safety and Environmental Protection, 2020, 143, 138. 13 Rauf M A, Ashraf S S. Chemical Engineering Journal, 2012, 209, 520. 14 Yang Y W, Zhou T L, Qiao Q C, et al. Journal of China University of Mining & Technology, 2007, 17(1), 96. 15 Chen L, Li Y H, Du Q J, et al. Carbohydrate Polymers Scientific & Technological Aspects of Industrially Important Polysaccharides, 2017, 155, 345. 16 Wu Y J, Zhang L J, Gao C L, et al. Journal of Chemical and Engineering Data, 2009, 54, 3229. 17 Gong B L. Methylene blue removal by coupling BC adsorption with TiO2 photodegradation. Master's Thesis, East China Normal University, China, 2009 (in Chinese). 龚兵丽. 吸附光催化联合处理亚甲基蓝的研究. 硕士学位论文, 华东师范大学, 2009. 18 Alver E, Metin A Ü, Brouers F. International Journal of Biological Macromolecules, 2020, 154, 104. 19 Zheng Y, Zhou X Y, Ling H, et al. Industrial Water Treatment, 2020, 40(10), 99 (in Chinese). 郑莹, 周小雨, 凌海, 等. 工业水处理, 2020, 40(10), 99. 20 Shao Y, Guo M, Sun Y T, et al. Journal of Chemical Engineering of Chinese Universities, 2023, 37(4),679 (in Chinese). 邵燕, 郭明, 孙雨婷, 等. 高校化学工程学报, 2023, 37(4),679. 21 Zhang C L, Han E S, Teng H K, et al. Industrial Water Treatment, 2020, 40(5), 44 (in Chinese). 张程蕾, 韩恩山, 滕厚开, 等. 工业水处理, 2020, 40(5), 44. 22 Qadeer R. Colloids & Surfaces A Physicochemical & Engineering Aspects, 2007, 293(1-3), 217. 23 Liu X M, Deng X L, Zhu G Z. Biomass Chemical Engineering, 2010, 44(6), 52 (in Chinese). 刘晓敏, 邓先伦, 朱光真. 生物质化学工程, 2010, 44(6), 52. 24 Kosheleva R I, Mitropoulos A C, Kyzas G Z. Environmental Chemistry Letters, 2018, 17(1), 429. 25 Yousefi M, Arami S M, Takallo H, et al. Human and Ecological Risk Assessment, 2018, 25(3), 1508. 26 Heidarinejad Z, Dehghani M H, Heidari M, et al. Environmental Che-mistry Letters, 2020, 18, 393. 27 Wen K Y, Li H Y, Cui J G, et al. Industrial Water Treatment, 2021, 41(2), 62 (in Chinese). 温凯云, 李红艳, 崔建国, 等. 工业水处理, 2021, 41(2), 62. 28 Xie W T, Yang Y S, Tang M C, et al. Industrial Water Treatment, 2020, 40(7), 87 (in Chinese). 谢婉婷, 杨耀森, 唐谋程, 等. 工业水处理, 2020, 40(7), 87. 29 Powell C, Beall G W. Current Opinion in Colloid & Interface Science, 2015, 20(5-6), 362. 30 Strydom C A, Bunt J R, Schobert H H, et al. Fuel Processing Technology, 2011, 92(4), 764. 31 Zhang Y Q. Preparation and characteristics of different lignite humic acids. Master's Thesis, Kunming University of Science and Technology, China, 2021 (in Chinese). 张远琴. 不同褐煤腐植酸的制备及其特性研究. 硕士学位论文, 昆明理工大学, 2021. 32 Xu S. Study on the adsorption mechanism of heavy metals and the preparation adsorption materials of ramie stalk. Ph. D. Thesis, Nanchang University, China, 2016 (in Chinese). 徐升. 苎麻麻骨吸附重金属机理及吸附材料的制备[D]. 博士学位论文, 南昌大学, 2016. 33 Kubra K T, Salman M S, Hasan M N. Journal of Molecular Liquids, 2021, 328, 115468. 34 Singh K P, Mohan D, Sinha S, et al. Industrial & Engineering Chemistry Research, 2003, 42(9), 1965. 35 Doan M, Alkan M. Chemosphere, 2003, 50(4), 517. 36 Senthilkumaar S, Kalaamani P, Subburaam C V, et al. Journal of Ha-zardous Materials, 2006, 136(3), 800. 37 Yang P X. In: Chinese Water Pollution Control Technology and Equipment. Tianjin, 1998 (in Chinese). 杨蒲仙. 中国水污染防治技术装备. 天津, 1998. 38 Zhang S P, Liu J H, Sun Y. In:Proceedings of the 9th National Biochemical Conference. Beijing, 2000 (in Chinese). 张松平, 刘建华, 孙彦. 第九届全国生物化工学术会议. 北京, 2000. 39 Wang J, Guo X. Chemosphere, 2020, 258, 127279. 40 Webber T W, Chakkravorti R K. AIChE Journal, 1974, 20, 228. 41 Mehmet D, Alkan M, Özkan D, et al. Chemical Engineering Journal, 2006, 124(1-3), 89. 42 Ho Y S. Water Research, 2006, 40(1), 119. 43 Duman O, Ayranci E. Journal of Hazardous Materials, 2010, 174(1-3), 359. 44 Fu Y Y. Preparation of onion-like carbon composites and their adsorption and degradation properties for organic dyes. Ph. D. Thesis, University of Chinese Academy of Science, 2020 (in Chinese). 付耀耀. 纳米洋葱碳复合材料的制备及其吸附和降解有机染料性能研究. 博士学位论文, 中国科学院大学, 2020. 45 Escudero C, Fiol N, Villaescusa I, et al. Journal of Hazardous Materials, 2009, 164(2-3), 533. 46 Ai L, Zhang C, Chen Z. Journal of Hazardous Materials, 2011, 192(3), 1515. 47 Sriramoju S K, Dash P S, Majumdar S. Journal of Environmental Chemical Engineering, 2021, 9(1), 104784. 48 Gokce Y, Yaglikci S, Yagmur E, et al. Journal of Environmental Chemical Engineering, 2020, 9(2), 104819. 49 Niu T X, Zhou J W, Zhang C, et al. RSC Advances, 2018, 8(47), 26978. 50 Purevsuren B, Liou Y H, Davaajav Y, et al. Journal of the Chinese Institute of Engineers, 2017, 40(4), 355. 51 Feng Q, Xu R S, Li M, et al. Inorganic Chemicals Industry, 2021, 53(12), 122 (in Chinese). 冯倩, 徐荣声, 李梅, 等. 无机盐工业, 2021, 53(12), 122. 52 Liu L X, Ma Y B, Liu Z, et al. Industrial Water Treatment, 2021, 41(6), 252 (in Chinese). 刘连鑫, 马彦彪, 刘哲, 等. 工业水处理, 2021, 41(6), 252. 53 Wang J, Han Q N, Lei Y T, et al. CIESC Journal, 2021, 72(5), 2826 (in Chinese). 王晶, 韩巧宁, 雷以廷, 等. 化工学报, 2021, 72(5), 2826. 54 Bediako J K, Lin S, Sarkar A K, et al. Environmental Science and Pollution Research, 2020, 27(2), 1053. 55 Cai J X, Feng L, Kang J, et al. Fresenius Environmental Bulletin, 2013, 22(9), 2547. 56 Li Y L, Li L P, Yin J, et al. Chinese Journal of Environmental Engineering, 2013, 7(8), 3059 (in Chinese). 李依丽, 李利平, 尹晶, 等. 环境工程学报, 2013, 7(8), 3059.