Please wait a minute...
材料导报  2021, Vol. 35 Issue (Z1): 495-500    
  高分子与聚合物基复合材料 |
载体孔属性对多孔复合PCMs热性能的影响:综述
李伟培1, 何世杰1, 邱志明1, 吴松平2, 严玉蓉1
1 华南理工大学材料科学与工程学院,广州 510640
2 华南理工大学化学与化工学院,广州 510640
Influence of Structure and Properties of Porous Carrier on Thermal Properties of Multi-scale Porous PCMs Composite: a Review
LI Weipei1, HE Shijie1, QIU Zhiming1, WU Songping2, YAN Yurong1
1 School of Materials Science and Engineering, South China University of Technology, Guangdong 510640, China
2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangdong 510640, China
下载:  全 文 ( PDF ) ( 3305KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相变储能技术是缓解能源供需矛盾的有效方法,在多种转变类型的相变材料(PCMs)中,固-液转变PCMs由于其较高的相变焓,较小的体积变化而最具实用性,但其在相变过程中存在液态PCMs容易泄漏的问题。以多孔材料为载体,实现PCMs的有效封装可有效缓解这类泄漏问题。本文就多孔载体的孔径尺寸、孔隙结构、孔表面与PCMs的相互作用等影响因素对多孔复合PCMs的热力学性能变化规律进行归纳,发现:微米尺寸的孔存在明显的PCMs泄漏,小尺寸介孔结构的局域性限制可导致PCMs相变行为减弱,结晶度降低。对于含有分级多孔结构的载体,微孔可以提供毛细管力,实现对PCMs分子的吸附,介孔提供PCMs的传输途径,大孔则作为PCMs的储存腔,使复合材料具有良好的综合性能。本文同时讨论了载体与PCMs间的相容性,氢键对复合材料吸附容量和相变焓的影响,并对多孔复合PCMs的研究方向进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李伟培
何世杰
邱志明
吴松平
严玉蓉
关键词:  相变储能材料  孔径  孔表面  热力学性能    
Abstract: Phase change energy storage technology is an effective way to alleviate the contradiction between energy supply and demand. For phase change materials (PCMs), PCMs characterized by the solid-liquid transition are commonly used due to their higher phase change enthalpy and smaller volume change. However, the leakage of liquid PCMs during the phase change process is the key issue in actual application fields. Encapsulating of PCMs in porous materials has been fulfilled for the effectively alleviation of the leakage problem. Here, Influence of perspectives factors on the thermodynamic properties of porous composite PCMs were summarized, such as the of pore size of porous carrier, pore structure, the interaction between the pore surface and the PCMs. Results showed that micrometer-scale pores help the leakage of liquid PCMs. The small-sized mesoporous structure restricts the movement of PCMs molecules and reduces its crystallinity. For carrier with hierarchical porous structure, the micropores can provide capillary force to adsorb PCMs molecules, the macropores serving as a storage cavity to the PCMs, and acted as a bridge connecting small pores and macropores, thus the composite material has a good comprehensive performance. The effects of compatibility and hydrogen bonding between the carrier and PCMs on the adsorption capacity and phase transition enthalpy of the composite are discussed, and the research tendency of porous composite PCMs is prospected.
Key words:  phase change energy storage material    pore size    pore surface    thermodynamic properties
                    发布日期:  2021-07-16
ZTFLH:  TQ050.4  
基金资助: 国家自然科学基金 (51873074)
作者简介:  李伟培,华南理工大学硕士在读研究生,主要研究方向为相变储能材料的封装研究和智能穿戴功能纤维的研究,参与多项国家、省部级课题及企业科研攻关项目,申请发明专利2项。严玉蓉,教授,博士研究生导师。2002.7月于华南理工大学获得博士学位,并留校任教至今。2005—2007年于广东新会美达锦纶股份有限公司从事博士后研究工作。2007年于美国Akron大学访问研究。2017年于瑞士联邦材料研究所(Empa)访问研究。现兼任教育部高等学校纺织类专业教学指导委员会纤维材料分教学指导委员会副主任委员、非织造材料分教学指导委员会委员、中国材料研究学会纤维材料改性与复合技术分会常务理事、中国化学纤维工业协会理事。主要研究领域:静电纺丝成形及微/纳米纤维在过滤、生物医用、高效催化、隔音、电池隔膜及电极材料等领域的应用基础研究;复合纺丝纤维成型机理研究;智能穿戴功能纤维研究;生物可降解高分子材料的改性、纤维成型及功能化研究;碱金属电池负极材料等研究等。先后主持和参与30余项国家、省部级课题及企业科研攻关项目,发表中、英论文160余篇,授权发明专利19件,实用新型专利17件。主编中文教材1部,参编中文专著6部,外文专著4部。获得省级科技进步三等奖3次,市级科技进步奖多次。
引用本文:    
李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
LI Weipei, HE Shijie, QIU Zhiming, WU Songping, YAN Yurong. Influence of Structure and Properties of Porous Carrier on Thermal Properties of Multi-scale Porous PCMs Composite: a Review. Materials Reports, 2021, 35(Z1): 495-500.
链接本文:  
http://www.mater-rep.com/CN/  或          http://www.mater-rep.com/CN/Y2021/V35/IZ1/495
1 舟丹. 中外能源, 2020, 25(7), 43.
2 王静静,徐小亮,梁凯彦,等. 工程科学学报, 2020, 42(1), 26.
3 Esmaeeli H S, Farnam Y, Haddock J E, et al. Materials & Design, 2018, 145, 74.
4 Hamidreza, Benisi, Ghadim, et al. International Journal of Energy Research, 2019, 43(14), 8536.
5 Lai C C, Lin S M, Chu Y D, et al. Nano Energy, 2016, 25, 218.
6 Pourakabar A,Darzi A A R. Applied Thermal Engineering, 2019, 150, 132.
7 Li C E, Yu H, Song Y, et al. Renewable Energy, 2020, 145, 1465.
8 杨昊天,蒋达华,张鑫林,等. 化工新型材料, 2019, 47(5), 32.
9 Biçer A,Sarı A. Energy Conversion and Management, 2013, 69, 148.
10 陈祉如,姚兴茂,尹翔鹏,等. 可再生能源, 2019, 37(3), 349.
11 张爱军,孙志高,李成浩,等. 化工新型材料, 2018, 46(2), 75.
12 徐众,侯静,万书权,等. 储能科学与技术, 2020, 9(1), 109.
13 Matei C, Buhǎlţeanu L, Berger D, et al. International Journal of Heat and Mass Transfer, 2019, 144, 118699.
14 Luan Y, Yang M, Ma Q, et al. Journal of Materials Chemistry A, 2016, 4(20), 7641.
15 Nomura T, Okinaka N, Akiyama T. Materials Chemistry and Physics, 2009, 115(2-3), 846.
16 安钧洳,王成君,刘芳,等. 化工新型材料, 2020, 48(4), 5.
17 Aftab W, Huang X, Wu W, et al. Energy & Environmental Science, 2018, 11(6), 1392.
18 Wang W, Wang C, Li W, et al. Physical Chemistry Chemical Physics, 2013, 15(34), 14390.
19 Goitandia A. M, Beobide G, Aranzabe E, et al. Solar Energy Materials and Solar Cells, 2015, 134, 318.
20 Li Y L, Li J H, Deng Y, et al. Applied Energy, 2016, 171, 37.
21 Yang Y N, Pang Y, Liu Y, et al. Materials Letters, 2018, 216, 220.
22 Heu C S, Kim S W, Lee K S, et al. Energy Conversion & Management, 2017, 149, 608.
23 Feng L L, Zhao W, Zheng J, et al. Solar Energy Materials and Solar Cells, 2011, 95(12), 3550.
24 Nomura T, Zhu C Y, Sheng N, et al. Solar Energy Materials and Solar Cells, 2015, 143, 424.
25 Mitran R A, Berger D, Munteanu C, et al. The Journal of Physical Chemistry C, 2015, 119(27), 15177.
26 Liu S, Ma G X, Xie S L, et al. RSC Advances, 2016, 6(113), 111787.
27 Kadoono T,Ogura M. Physical Chemistry Chemical Physics, 2014, 16(12), 5495.
28 Fan S, Gao H Y, Dong W J, et al. European Journal of Inorganic Che-mistry, 2017, 2017(14), 2138.
29 Luan Y, Yang M,Ma Q Q. Journal of Materials Chemistry A, 2016, 4(20), 7641.
30 Zhao Y Q, Jin L, Zou B Y, et al. Applied Thermal Engineering, 2020, 171, 115015.
31 Tang J, Yang M, Yu F, et al. Applied Energy, 2017, 187, 514.
32 Li Y L, Li J H, Deng Y, et al. Applied Energy, 2016, 171, 37.
33 Andriamitantsoa R S, Dong W J, Gao H Y, et al. Chemical Physics Letters, 2017, 671, 165.
34 Zhang X L, Lin Q L, Luo H J, et al. Applied Energy, 2020, 260, 114278.
35 Duan Z J, Zhang H Z, Sun L X, et al. Journal of Thermal Analysis and Calorimetry, 2013, 115(1), 111.
36 Zhou Y, Sun W C, Ling Z Y, et al. Industrial & Engineering Chemistry Research, 2017, 56(50), 14799.
37 Zou T, Fu W W, Liang X H, et al. Energy, 2020, 190, 116473.
38 Yu Y X, Xu J, Wang G C, et al. Journal of Materials Science, 2019, 55(4), 1511.
39 Huang X Y, Liu Z P, Xia W, et al. Journal of Materials Chemistry A, 2015, 3(5), 1935.
40 Zhang Y, Zhang J S, Li X Q, et al. Journal of Energy Storage, 2019, 21, 611.
41 Qian T T, Li J H, Min X, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 6(1), 897.
42 Wang J J, Yang M, Lu Y F, et al. Nano Energy, 2016, 19, 78.
43 Feng D L, Feng Y H, Li P, et al. Microporous and Mesoporous Mate-rials, 2020, 292, 109756.
44 Wang Y C, Zhang L Y, Tao S Y, et al. Microporous and Mesoporous Materials, 2014, 193, 69.
45 Chen L, Zou R, Xia W, et al. ACS Nano, 2012, 6(12), 10884.
46 Han L, Jia X L, Li Z M, et al. Industrial & Engineering Chemistry Research, 2018, 57(39), 13026.
[1] 熊浩林, 韩秀梅, 张晓燕. 分子筛催化剂的发展与展望[J]. 材料导报, 2021, 35(Z1): 137-142.
[2] 郑少军, 刘天乐, 高鹏, 蒋国盛, 冯颖韬, 李丽霞, 陈宇. 固井水泥石孔隙结构演变及力学强度发展规律[J]. 材料导报, 2021, 35(12): 12092-12098.
[3] 陈姝敏, 吴迪, 何文浩, 陈勇. 银纳米粒子负载的石墨烯基环氧树脂复合材料的制备及性能[J]. 材料导报, 2020, 34(Z1): 503-506.
[4] 马茸茸, 张电, 刘一军, 刘静, 杨晓凤, 李延军, 马爱琼. 多孔氮化硅陶瓷的研究进展及构效关系中的矛盾平衡[J]. 材料导报, 2020, 34(9): 9101-9109.
[5] 滕英跃, 候星成, 白雪, 刘全生, 李毅, 吴侃, 朱志成. 基于1H-NMR实验数据的三次样条插值函数模型对热解褐煤孔隙演化的研究[J]. 材料导报, 2020, 34(18): 18074-18080.
[6] 赖榕永, 王温馨, 谢雯倩, 丁益民. MA-PA-SA/改性粉煤灰复合相变储能材料的制备与性能[J]. 材料导报, 2019, 33(z1): 219-222.
[7] 胡文龙, 刘赞群, 裴敏. 引气剂对硫铝酸盐水泥混凝土硫酸盐结晶破坏的影响[J]. 材料导报, 2019, 33(z1): 239-243.
[8] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[9] 张潇华, 于思荣, 郭丽娟, 周扬理. 硅含量对Al-Si-Cu相变储能材料腐蚀性的影响[J]. 材料导报, 2019, 33(4): 582-585.
[10] 宋政骢, 米国发, 王有超, 刘晨, 历长云. W-Re二元合金弹性和热力学性质的第一性原理计算[J]. 材料导报, 2019, 33(16): 2785-2792.
[11] 苏婷, 宋永辉, 张珊, 田宇红, 兰新哲. 硝酸活化时间对煤基电极材料结构及性能的影响[J]. 《材料导报》期刊社, 2018, 32(4): 528-532.
[12] 李秀丽, 铁生年. 速溶高粘羧甲基纤维素钠对不同相变温度梯度芒硝基相变储能材料性能的影响[J]. 材料导报, 2018, 32(22): 3848-3852.
[13] 王顺风, 马雪, 张祖华, 王爱国, 李亚林. 粉煤灰-偏高岭土基地质聚合物的孔结构及抗压强度[J]. 材料导报, 2018, 32(16): 2757-2762.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed