Influence of Structure and Properties of Porous Carrier on Thermal Properties of Multi-scale Porous PCMs Composite: a Review
LI Weipei1, HE Shijie1, QIU Zhiming1, WU Songping2, YAN Yurong1
1 School of Materials Science and Engineering, South China University of Technology, Guangdong 510640, China 2 School of Chemistry and Chemical Engineering, South China University of Technology, Guangdong 510640, China
Abstract: Phase change energy storage technology is an effective way to alleviate the contradiction between energy supply and demand. For phase change materials (PCMs), PCMs characterized by the solid-liquid transition are commonly used due to their higher phase change enthalpy and smaller volume change. However, the leakage of liquid PCMs during the phase change process is the key issue in actual application fields. Encapsulating of PCMs in porous materials has been fulfilled for the effectively alleviation of the leakage problem. Here, Influence of perspectives factors on the thermodynamic properties of porous composite PCMs were summarized, such as the of pore size of porous carrier, pore structure, the interaction between the pore surface and the PCMs. Results showed that micrometer-scale pores help the leakage of liquid PCMs. The small-sized mesoporous structure restricts the movement of PCMs molecules and reduces its crystallinity. For carrier with hierarchical porous structure, the micropores can provide capillary force to adsorb PCMs molecules, the macropores serving as a storage cavity to the PCMs, and acted as a bridge connecting small pores and macropores, thus the composite material has a good comprehensive performance. The effects of compatibility and hydrogen bonding between the carrier and PCMs on the adsorption capacity and phase transition enthalpy of the composite are discussed, and the research tendency of porous composite PCMs is prospected.
李伟培, 何世杰, 邱志明, 吴松平, 严玉蓉. 载体孔属性对多孔复合PCMs热性能的影响:综述[J]. 材料导报, 2021, 35(Z1): 495-500.
LI Weipei, HE Shijie, QIU Zhiming, WU Songping, YAN Yurong. Influence of Structure and Properties of Porous Carrier on Thermal Properties of Multi-scale Porous PCMs Composite: a Review. Materials Reports, 2021, 35(Z1): 495-500.
1 舟丹. 中外能源, 2020, 25(7), 43. 2 王静静,徐小亮,梁凯彦,等. 工程科学学报, 2020, 42(1), 26. 3 Esmaeeli H S, Farnam Y, Haddock J E, et al. Materials & Design, 2018, 145, 74. 4 Hamidreza, Benisi, Ghadim, et al. International Journal of Energy Research, 2019, 43(14), 8536. 5 Lai C C, Lin S M, Chu Y D, et al. Nano Energy, 2016, 25, 218. 6 Pourakabar A,Darzi A A R. Applied Thermal Engineering, 2019, 150, 132. 7 Li C E, Yu H, Song Y, et al. Renewable Energy, 2020, 145, 1465. 8 杨昊天,蒋达华,张鑫林,等. 化工新型材料, 2019, 47(5), 32. 9 Biçer A,Sarı A. Energy Conversion and Management, 2013, 69, 148. 10 陈祉如,姚兴茂,尹翔鹏,等. 可再生能源, 2019, 37(3), 349. 11 张爱军,孙志高,李成浩,等. 化工新型材料, 2018, 46(2), 75. 12 徐众,侯静,万书权,等. 储能科学与技术, 2020, 9(1), 109. 13 Matei C, Buhǎlţeanu L, Berger D, et al. International Journal of Heat and Mass Transfer, 2019, 144, 118699. 14 Luan Y, Yang M, Ma Q, et al. Journal of Materials Chemistry A, 2016, 4(20), 7641. 15 Nomura T, Okinaka N, Akiyama T. Materials Chemistry and Physics, 2009, 115(2-3), 846. 16 安钧洳,王成君,刘芳,等. 化工新型材料, 2020, 48(4), 5. 17 Aftab W, Huang X, Wu W, et al. Energy & Environmental Science, 2018, 11(6), 1392. 18 Wang W, Wang C, Li W, et al. Physical Chemistry Chemical Physics, 2013, 15(34), 14390. 19 Goitandia A. M, Beobide G, Aranzabe E, et al. Solar Energy Materials and Solar Cells, 2015, 134, 318. 20 Li Y L, Li J H, Deng Y, et al. Applied Energy, 2016, 171, 37. 21 Yang Y N, Pang Y, Liu Y, et al. Materials Letters, 2018, 216, 220. 22 Heu C S, Kim S W, Lee K S, et al. Energy Conversion & Management, 2017, 149, 608. 23 Feng L L, Zhao W, Zheng J, et al. Solar Energy Materials and Solar Cells, 2011, 95(12), 3550. 24 Nomura T, Zhu C Y, Sheng N, et al. Solar Energy Materials and Solar Cells, 2015, 143, 424. 25 Mitran R A, Berger D, Munteanu C, et al. The Journal of Physical Chemistry C, 2015, 119(27), 15177. 26 Liu S, Ma G X, Xie S L, et al. RSC Advances, 2016, 6(113), 111787. 27 Kadoono T,Ogura M. Physical Chemistry Chemical Physics, 2014, 16(12), 5495. 28 Fan S, Gao H Y, Dong W J, et al. European Journal of Inorganic Che-mistry, 2017, 2017(14), 2138. 29 Luan Y, Yang M,Ma Q Q. Journal of Materials Chemistry A, 2016, 4(20), 7641. 30 Zhao Y Q, Jin L, Zou B Y, et al. Applied Thermal Engineering, 2020, 171, 115015. 31 Tang J, Yang M, Yu F, et al. Applied Energy, 2017, 187, 514. 32 Li Y L, Li J H, Deng Y, et al. Applied Energy, 2016, 171, 37. 33 Andriamitantsoa R S, Dong W J, Gao H Y, et al. Chemical Physics Letters, 2017, 671, 165. 34 Zhang X L, Lin Q L, Luo H J, et al. Applied Energy, 2020, 260, 114278. 35 Duan Z J, Zhang H Z, Sun L X, et al. Journal of Thermal Analysis and Calorimetry, 2013, 115(1), 111. 36 Zhou Y, Sun W C, Ling Z Y, et al. Industrial & Engineering Chemistry Research, 2017, 56(50), 14799. 37 Zou T, Fu W W, Liang X H, et al. Energy, 2020, 190, 116473. 38 Yu Y X, Xu J, Wang G C, et al. Journal of Materials Science, 2019, 55(4), 1511. 39 Huang X Y, Liu Z P, Xia W, et al. Journal of Materials Chemistry A, 2015, 3(5), 1935. 40 Zhang Y, Zhang J S, Li X Q, et al. Journal of Energy Storage, 2019, 21, 611. 41 Qian T T, Li J H, Min X, et al. ACS Sustainable Chemistry & Enginee-ring, 2017, 6(1), 897. 42 Wang J J, Yang M, Lu Y F, et al. Nano Energy, 2016, 19, 78. 43 Feng D L, Feng Y H, Li P, et al. Microporous and Mesoporous Mate-rials, 2020, 292, 109756. 44 Wang Y C, Zhang L Y, Tao S Y, et al. Microporous and Mesoporous Materials, 2014, 193, 69. 45 Chen L, Zou R, Xia W, et al. ACS Nano, 2012, 6(12), 10884. 46 Han L, Jia X L, Li Z M, et al. Industrial & Engineering Chemistry Research, 2018, 57(39), 13026.