Abstract: Polymer materials have become an indispensable material in modern production and life, thermosetting materials have better performance than thermoplastic materials due to the stable crosslinked structure in the molecular. However, the cross-linking of thermosetting materials is an irreversible process, and once formed, it cannot be reprocessed and recycled anymore, which will not only cause great waste of resources and environmental pollution, but also limit the application of thermosetting materials in some fields. Polymers containing dynamic reversible covalent bonds can form covalent adaptable networks which endow these polymers with interesting properties for material processing such as reshaping, reprocessing and recycling. Covalent adaptable networks can be classified as dissociative and associative covalent adaptable networks according to the exchange mechanism. Based on associative covalent adaptable networks, a new class of polymer was synthesized named as vitrimer. Vitrimers have attracted wide attention for their unique properties and defined as the third class of polymer materials besides thermosetting and thermoplastic materials. This paper mainly introduces the different exchange reaction mechanisms and research progress of classic vitrimer materials and vitrimer-like materials.This paper introduces the research background and characteristics of vitrimer materials, classic vitrimer materials and vitrimer-like materials are divided according to whether can completely meet the performance requirements of vitrimer. The research progress of vitrimer materials based on different exchange mechanisms in recent years are discussed, and forecasts the development prospect of such materials.
1 郭亚昆,仲敬荣,赵鹏翔,等.高分子材料科学与工程,2016,32(12),151. 2 Roy N, Bruchmann B, Lehn J M. Chemical Society Reviews,2015,44(11),3786. 3 Zou W, Dong J, Luo Y, et al. Advanced Materials,2017,29(14),1606100. 4 Kloxin C J, Scott T F, Adzima B J, et al. Macromolecules,2010,43(6),2643. 5 施前,齐航,王铁军.中国科学:技术科学,2019,49(10),1121. 6 Yang H, Yu K, Mu X, et al. Soft Matter,2015,11(31),6305. 7 王怡,冯展彬,左洪礼,等.高分子学报,2019,50(5),485. 8 Sheridan R J, Bowman C N. Polymer Chemistry,2013,4(18),4974. 9 Yang H, Zheng X, Sun Y, et al. Computational Materials Science,2017,139,48. 10 Denissen W, Winne J M, Du Prez F E. Chemical Science,2016,7(1),30. 11 Canadell J, Goossens H, Klumperman B. Macromolecules,2011,44(8),2536. 12 黄晓文,张士玉,赵凯锋,等.高分子通报,2018(5),67. 13 Bhat K L, Markham G D, Larkin J D, et al. The Journal of Physical Chemistry A,2011,115(26),7785. 14 Sanford M S, Ulman M, Grubbs R H. Journal of the American Chemical Society,2001,123(4),749. 15 Yang X, Guo Y, Luo X, et al. Composites Science and Technology,2018,164,59. 16 Fu F, Meiqi H, Weilan Z, et al. Scientific Reports,2018,8(1),10325. 17 Montarnal D, Capelot M, Tournilhac F, et al. Science,2011,334(6058),965. 18 张希.高分子学报,2016(6),685. 19 黄鑫,刘汉超,樊正,高分子学报,2019,50(5),535. 20 Pei Z, Yang Y, Chen Q, et al. Advanced Materials,2016,28(1),156. 21 Chabert E, Vial J, Cauchois J P, et al. Soft Matter,2016,12(21),4838. 22 Chen J, Huang H, Fan J, et al. Frontiers in Chemistry,2019,7(632). 23 张宏.聚吡咯包裹碳纳米管掺杂vitrimer对于酯交换反应的影响及加入Fe3O4后在电磁屏蔽方面的作用.硕士学位论文,华东师范大学,2017. 24 Capelot M, Unterlass M M, Tournilhac F, et al. ACS Macro Letters,2012,1(7),789. 25 Liu T, Hao C, Wang L, et al. Macromolecules,2017,50(21),8588. 26 Yang Y, Pei Z, Zhang X, et al. Chemical Science,2014,5(9),3486. 27 Brutman J P, Delgado P A, Hillmyer M A. ACS Macro Letters,2014,3(7),607. 28 Obadia M M, Mudraboyina B P, Serghei A, et al. Journal of the American Chemical Society,2015,137(18),6078. 29 Hendriks B, Waelkens J, Winne J M, et al. ACS Macro Letters,2017,6(9),930. 30 Denissen W, Droesbeke M, Nicolaÿ R, et al. Nature Communications,2017,8(1),14857. 31 Denissen W, De Baere I, Van Paepegem W, et al. Macromolecules,2018,51(5),2054. 32 Denissen W, Rivero G, Nicolaÿ R, et al. Advanced Functional Materials,2015,25(16),2451. 33 Tellers J, Pinalli R, Soliman M, et al. Polymer Chemistry,2019,10(40),5534. 34 Vougioukalakis G C, Grubbs R H. Chemical Reviews,2010,110(3),1746. 35 Nicolaou K C, Bulger P G, Sarlah D. Angewandte Chemie International Edition,2005,44(29),4490. 36 Lu Y X, Guan Z. Journal of the American Chemical Society,2012,134(34),14226. 37 Lu Y X, Tournilhac F, Leibler L, et al. Journal of the American Chemical Society,2012,134(20),8424. 38 Scholl M, Ding S, Lee C W, et al. Organic Letters,1999,1(6),953. 39 Pepels M, Filot I, Klumperman B, et al. Polymer Chemistry,2013,4(18),4955. 40 Yoon J A, Kamada J, Koynov K, et al. Macromolecules,2012,45(1),142. 41 窦雪宇,王星,吴德成.高分子学报,2019,50(5),429. 42 杨一林,卢珣,王巍巍,等.材料工程,2017,45(8),1. 43 Yang Y, Lu X, Wang W. Materials & Design,2017,127,30. 44 Rekondo A, Martin R, Ruiz De Luzuriaga A, et al. Materials Horizons,2014,1(2),237. 45 Ruiz De Luzuriaga A, Martin R, Markaide N, et al. Materials Horizons,2016,3(3),241. 46 Taynton P, Yu K, Shoemaker R K, et al. Advanced Materials,2014,26(23),3938. 47 Feng Z, Yu B, Hu J, et al. Industrial & Engineering Chemistry Research,2019,58(3),1212. 48 Dhers S, Vantomme G, Avérous L. Green Chemistry,2019,21(7),1596. 49 Kantor S W, Grubb W T, Osthoff R C. Journal of the American Chemical Society,1954,76(20),5190. 50 Osthoff R C, Bueche A M, Grubb W T. Journal of the American Chemical Society,1954,76(18),4659. 51 Zheng P, Mccarthy T J. Journal of the American Chemical Society,2012,134(4),2024. 52 Wu X, Yang X, Yu R, et al. Journal of Materials Chemistry A,2018,6(22),10184. 53 Delpierre S, Willocq B, De Winter J, et al. Chemistry-A European Journal,2017,23(28),6730. 54 Cash J J, Kubo T, Bapat A P, et al. Macromolecules,2015,48(7),2098. 55 Cromwell O R, Chung J, Guan Z. Journal of the American Chemical Society,2015,137(20),6492. 56 Caffy F, Nicolaÿ R. Polymer Chemistry,2019,10(23),3107. 57 Röttger M, Domenech T, Van Der Weegen R, et al. Science,2017,356(6333),62. 58 Breuillac A, Kassalias A, Nicolaÿ R. Macromolecules,2019,52(18),7102.