Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080173-11    https://doi.org/10.11896/cldb.23080173
  无机非金属及其复合材料 |
沥青路面典型养护施工全过程直接能耗及碳排放量化分析
仪明伟1,2,3, 肖月1,4,*, 林翔2,3, 李强2,3, 弋晓明2,3
1 武汉理工大学,硅酸盐建筑材料国家重点实验室,武汉 430070
2 中公高科养护科技股份有限公司,北京 100095
3 交通运输部公路科学研究院,北京 100088
4 长安大学材料科学与工程学院,西安 710064
Research on Direct Energy Consumption and Carbon Emission of Asphalt Pavement Maintenance Engineering
YI Mingwei1,2,3, XIAO Yue1,4,*, LIN Xiang2,3, LI Qiang2,3, YI Xiaoming2,3
1 State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, China
2 RoadMainT Co., Ltd., Beijing 100095, China
3 Research Institute of Highway Ministry of Transport, Beijing 100088, China
4 School of Material Science and Engineering, Chang’an University, Xi’an 710064, China
下载:  全 文 ( PDF ) ( 4062KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 公路基础设施高质量智慧建养是保障我国“双碳”目标的重要需求。目前我国公路养护里程超过500万km,在养护工程中的能耗和产生的碳排放尚无明确的评价标准。本研究将沥青路面养护过程划分为原材料生产、混合料拌合生产、混合料摊铺碾压及材料运输四个环节,利用层次分析法确定了多个典型养护工程各环节中能耗及碳排放的权重,提出了能耗指数(ECI)和碳成本指数(ECCI)两个评价指标及计算方法,量化研究了养护工程的直接能耗和碳排放情况。研究表明:养护技术的原材料生产及拌合前加热为能耗的主要环节,两个环节的ECI指数值占整体ECI指标值的80%以上;养护工程中上面层及罩面层应用的改性沥青等高性能材料导致了高能耗和碳排放,采用改性沥青的养护技术ECI值较普通沥青提高了100%;采用低温或再生类的养护技术节能效果明显,其中就地冷再生ECCI指数较常规养护工程降低50%以上,再生类养护技术能对公路养护行业的减碳行为起到很好的支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
仪明伟
肖月
林翔
李强
弋晓明
关键词:  公路养护  直接能耗  碳排放  沥青路面  能耗指数  碳成本指数    
Abstract: The Chinese ‘double carbon’ target should be actively promoted by highway infrastructure while facilitating rapid economic development.However, there is currently no clear evaluation standard for energy consumption and carbon emissions during the maintenance of millions of kilometers of roads.This study divided asphalt pavement maintenance projects into four stages:raw material production, asphalt mixture production, paving and rolling, and materials transportation.The analytic hierarchy process (AHP) was applied to analyze the energy consumption and carbon emission weights of various stages in several typical maintenance projects.Two evaluation indexes and calculation methods, energy consumption index (ECI) and energy consumption cost index (ECCI), were proposed to quantitatively analyze the direct energy consumption and carbon emission of maintenance projects.The research showed that the production of raw materials and materials heating before mixing had the highest energy consumption, with the ECI index values of these two stages accounting for more than 80% of the overall ECI index value.The upper layer and overlay layer in the maintenance project required more energy and carbon emissions for better performance.The ECI value of maintenance technology using modified asphalt was 100% higher than that of matrix asphalt.The energy-saving effect of low temperature or regenerative maintenance technology was significant, with the ECCI index of cold in-place recycling being more than 50% lower than that of conventional maintenance projects.
Key words:  highway maintenance    direct energy consumption    carbon emission    asphalt pavements    energy consumption index (ECI)    energy consumption cost index (ECCI)
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  U414  
通讯作者:  * 肖月,教授,博士研究生导师,长安大学材料科学与工程学院院长。博士毕业于代尔夫特理工大学,曾获教育部霍英东青年教师奖、中国化工学会技术发明奖和湖北省科技进步奖,入选湖北省楚天学者和校青年拔尖人才等。一直从事交通基础设施材料研究与教学工作,在低烟气排放沥青材料、抗滑罩面和固废道材资源化利用等方面取得了一系列原创研究成果。主持国家自然科学基金项目4项,发表学术论文100余篇。xiaoy@whut.edu.cn   
作者简介:  仪明伟,2013年6月、2016年6月于武汉理工大学分别获得工学学士学位和硕士学位。现为武汉理工大学材料科学与工程学院博士研究生,在肖月教授的指导下进行研究。目前主要在公路路面数字化管理、公路养护决策、公路绿色化及公路养护新材料等领域从事研究与应用工作。
引用本文:    
仪明伟, 肖月, 林翔, 李强, 弋晓明. 沥青路面典型养护施工全过程直接能耗及碳排放量化分析[J]. 材料导报, 2024, 38(20): 23080173-11.
YI Mingwei, XIAO Yue, LIN Xiang, LI Qiang, YI Xiaoming. Research on Direct Energy Consumption and Carbon Emission of Asphalt Pavement Maintenance Engineering. Materials Reports, 2024, 38(20): 23080173-11.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080173  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080173
1 Sabina A, Muna R, Meshayel O, et al. Energy for Sustainable Development, 2013, 17(5), 438.
2 Häkkinen T, Mäkelä K. Environmental adaption of concrete: environmental impact of concrete and asphalt pavements, Espoo: VTT Technical Research Centre of Finland, FNL, 1996, pp.95.
3 He L, Li G N, Zhang J H, et al. Journal of Chang’an University (Natural Science Edition), 2018, 38(4), 10 (in Chinese).
何亮, 李冠男, 张军辉, 等. 长安大学学报(自然科学版), 2018, 38(4), 10.
4 Yang B. Quantitative method and evaluation system of energy-saving and emission-reduction for asphalt pavement. Ph. D. Thesis, Chang’an University, China, 2012 (in Chinese).
杨博. 沥青路面节能减排量化分析方法及评价体系研究. 博士学位论文, 长安大学, 2012.
5 Pan M P. The methodology research and application on energy consumption and carbon emissions of highway based on the life cycle assessment. Master’s Thesis, South China University of Technology, China, 2011 (in Chinese).
潘美萍. 基于LCA的高速公路能耗与碳排放计算方法研究及应用. 硕士学位论文, 华南理工大学, 2011.
6 Li J, Xiao F P, Zhang L F, et al. Journal of Cleaner Production, 2019, 233, 1182.
7 Zhou Y, Guo W J, Zhu D L. Highway Engineering, 2022, 47(5), 102 (in Chinese).
周毅, 郭伍军, 朱东莉. 公路工程, 2022, 47(5), 102.
8 Celauro C, Corriere F, Guerrieri M, et al. Journal of Cleaner Production, 2017, 142, 3482.
9 Li X Y, Suo Z, Luo L. Materials Reports, 2020, 34(Z1), 209 (in Chinese).
李旭阳, 索智, 罗亮. 材料导报, 2020, 34(Z1), 209.
10 Cai B F, Zhu S L, Yu S M, et al. Environmental Engineering, 2019, 37(8), 1 (in Chinese).
蔡博峰, 朱松丽, 于胜民, 等. 环境工程, 2019, 37(8), 1.
11 Luin B, Petelin S, Mansour F. Energy, 2017, 137, 260.
12 Huang Y, Bird R, Heidrich O. Journal of Cleaner Production, 2009, 17(2), 283.
13 Liu X L, Wang H T, Chen J, et al. Acta Scientiae Circumstantiae, 2010, 30(10), 2136 (in Chinese).
刘夏璐, 王洪涛, 陈建, 等. 环境科学学报, 2010, 30(10), 2136.
14 Santero N, Horvath A. Environmental Research Letters, 2009, 4, 034011.
15 García-Sanz-Calcedo J, Gómez-Chaparro M. Sustainable Cities and Society, 2017, 30, 217.
16 Specifications for Maintenance Design of Highway Asphalt Pavement (JTG 5421-2018), China Communications Press, China, 2018, pp.33 (in Chinese).
公路沥青路面养护设计规范(JTG 5421-2018), 人民交通出版社, 2018, pp.33.
17 Fan H Y, Li X. Highway, 2019, 64(8), 50 (in Chinese).
[1] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[2] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[3] 王振军, 阎凤凤, 张含笑, 梁晴陨. 乳化沥青与RAP再生界面融合特征研究进展[J]. 材料导报, 2023, 37(7): 21030199-10.
[4] 张军, 郭乃胜, 吕欣, 褚召阳, 房辰泽. 聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究[J]. 材料导报, 2023, 37(20): 22050191-7.
[5] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[6] 吴国荣, 黄诗雯, 郭跃, 陈旭辉, 宋佳鑫. 面向碳中和的汽车生命周期材料发展与展望[J]. 材料导报, 2023, 37(19): 22090281-8.
[7] 宫兴, 英红, 梁凤芯, 刘卫东, 许修权. 降低沥青路面温度的双向热诱导相变结构研究[J]. 材料导报, 2023, 37(13): 21040242-6.
[8] 周美洁, 艾立群, 洪陆阔, 孙彩娇, 周玉青, 孟凡峻. 氢冶金基础研究和新工艺探索[J]. 材料导报, 2023, 37(13): 21080052-6.
[9] 李文博, 张双侠, 史倩倩, 于明明. 新疆严寒区UV老化下的沥青路面抗损劣性能研究[J]. 材料导报, 2022, 36(21): 21100120-6.
[10] 王凤, 肖月, 崔培德, 磨炼同, 方明镜. 集料形态特征对沥青混合料性能影响规律的研究进展[J]. 材料导报, 2022, 36(17): 21030063-13.
[11] 朱月风, 赵向臻, 司春棣, 闫涛, 李彦伟. 自修复型微胶囊在沥青路面中的受力分析及破裂机制[J]. 材料导报, 2022, 36(10): 20120095-6.
[12] 凌天清, 崔立龙, 张意, 田波, 李定珠. 考虑沥青层表面细观构造的探地雷达空隙率检测研究[J]. 材料导报, 2021, 35(24): 24081-24087.
[13] 赵毅, 秦旻, 文凯琪, 梁乃兴, 王亚茹. 沥青路面超疏水抗凝冰材料研究进展[J]. 材料导报, 2021, 35(1): 1141-1153.
[14] 王兆仑, 刘朝晖, 高建华. 高粘度抗滑封装薄层沥青路面长效协同作用机理分析[J]. 材料导报, 2019, 33(Z2): 242-246.
[15] 陈玉静, 沙爱民, 胡魁, 刘状壮, 曹世豪, 张华. 青藏地区路用遮热涂层的制备及性能[J]. 材料导报, 2019, 33(14): 2319-2325.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed