Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080206-12    https://doi.org/10.11896/cldb.23080206
  无机非金属及其复合材料 |
自修复混凝土触发机制设计方法综述
吕乐阳*, 张翔宇, 董必钦, 王险峰, 邢锋
深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,广东 深圳 518060
Design of Triggering Mechanisms for Self-healing Concrete: a Review
LYU Leyang*, ZHANG Xiangyu, DONG Biqin, WANG Xianfeng, XING Feng
Guangdong Province Key Laboratory of Durability for Marine Civil Engineering, School of Civil Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 3368KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在过去的20年里,自修复技术作为一种提高混凝土材料耐久性和结构韧性的新方法,一经提出就引起了学术界和工程界的广泛关注。通过在混凝土搅拌阶段加入封装的修复单元来实现开裂混凝土的自主修复被证明是一种有效的实施方案。在自修复混凝土的研究中,自修复单元及其触发机制的设计是决定自修复单元工作性能及混凝土整体修复效率的重要因素。本文从被动触发和主动触发两个方面综述了现有自修复混凝土的主要触发机制及相应的修复机理;在解释了每种触发机制的基本概念和优缺点后,对各类自修复触发机制的技术特点和适用范围进行了比较和分析,为合理选择适用的自修复触发机制提供参考;最后,为了规范各种触发机制的评估标准,进而推动自修复技术在混凝土中的实际应用,还从触发效率、应用目的、限制条件三个方面对现有各种触发机制进行了系统评估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吕乐阳
张翔宇
董必钦
王险峰
邢锋
关键词:  自修复  混凝土  触发机制  触发效率    
Abstract: Over the past two decades, the realization of self-healing in concrete has attracted considerable attention from the research community as a technology to improve the durability and stability of structures. Among others, self-healing of concrete by incorporating various encapsulated additives is shown to be an effective and efficient way. In the design of autonomous self-healing strategy, the triggering mechanism is of great importance as it governs the effectiveness and efficiency of the self-healing system. This review provides a comprehensive summary of triggering mechanisms applied in self-healing concrete covering the following categories, i.e. mechanical triggering, ion triggering, environmental factors triggering and active triggering. After explaining the basic concept and some applications for each triggering mechanism, various triggering mechanisms were compared and analyzed to provide insight toward future developments. In addition, to standardize the evaluation of various triggering mechanisms, the existing triggering mechanisms were evaluated according to three basic criteria, triggering efficiency, application scenarios and limitations.
Key words:  self-healing    concrete    triggering mechanism    triggering efficiency
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TU58  
基金资助: 广东省自然科学基金面上项目(2022A1515010765);深圳市高等院校稳定支持计划面上项目(20220811031202001)
通讯作者:  * 吕乐阳,深圳大学土木与交通工程学院助理教授、副研究员、硕士研究生导师。2018年毕业于荷兰代尔夫特理工大学获博士学位,随后于深圳大学土木与交通工程学院工作至今。现主要从事绿色、智能水泥基材料研究。以第一或通信作者在Cement and Concrete Research、Cement and Concrete Composites等国内外高水平期刊发表论文20余篇,获批发明专利5项。l.lv@szu.edu.cn   
引用本文:    
吕乐阳, 张翔宇, 董必钦, 王险峰, 邢锋. 自修复混凝土触发机制设计方法综述[J]. 材料导报, 2024, 38(20): 23080206-12.
LYU Leyang, ZHANG Xiangyu, DONG Biqin, WANG Xianfeng, XING Feng. Design of Triggering Mechanisms for Self-healing Concrete: a Review. Materials Reports, 2024, 38(20): 23080206-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080206  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080206
1 ACI committee 224. Journal of the American Concrete Institute, 1984, 81(3), 211.
2 Xu J, Tang Y H, Wang X Z, et al. Construction and Building Materials, 2020, 265, 120364.
3 Sakir S, Raman S N, Safiuddin M, et al. Sustainability, 2020, 12(9), 3888.
4 Lan Y J, Zheng B M, Shi T, et al. Magazine of Concrete Research, DOI: 10.1680/jmacr.21.00227.
5 Van Tittelboom K, De Belie N. Materials, 2013, 6(6), 2182.
6 Van Tittelboom K, Gruyaert E, Rahier H, et al. Construction and Building Materials, 2012, 37, 349.
7 Wu M, Johannesson B, Geiker M. Construction and Building Materials, 2012, 28(1), 571.
8 Wu S Y, Yang J, Yang R C, et al. Construction and Building Materials, 2021, 266, 121139.
9 Snoeck D, Steuperaert S, Van Tittelboom K, et al. Cement and Concrete Research, 2012, 42(8), 1113.
10 Park B, Choi Y C. Construction and Building Materials, 2018, 189, 1054.
11 Lee H X D, Wong H S, Buenfeld N R. Advances in Applied Ceramics, 2010, 109(5), 296.
12 Qian S Z, Zhou J, Schlangen E. Cement & Concrete Composites, 2010, 32(9), 686.
13 Vehmas T, Kronlof A, Cwirzen A. Magazine of Concrete Research, 2018, 70(16), 856.
14 Sisomphon K, Copuroglu O, Koenders E A B. Construction and Building Materials, 2013, 42, 217.
15 Marchon D, Kawashima S, Bessaies-Bey H, et al. Cement and Concrete Research, 2018, 112, 96.
16 Reddy T C S, Ravitheja A. Ain Shams Engineering Journal, 2019, 10(1), 23.
17 Kost J, Langer R. Advanced Drug Delivery Reviews, 2012, 64, 327.
18 Broaders K, Pastine S, Grandhe S, et al. Chemical Communications (Cambridge, England), 2011, 47, 665-7.
19 Mauser T, Déjugnat C, Sukhorukov G. Macromolecular Rapid Communications, 2004, 25, 1781.
20 Dong B, Wang Y, Fang G, et al. Cement and Concrete Composites, 2015, 56, 46.
21 Kim B, Soo Lee H, Kim J, et al. Chem Commun (Camb), 2013, 49(18), 1865-7.
22 Bédard M F, De Geest B G, Skirtach A G, et al. Advances in Colloid and Interface Science, 2010, 158(1), 2.
23 Liang Z, Wang Q, Dong B Q, et al. Rsc Advances, 2018, 8(69), 39536.
24 Xiong W, Tang J N, Zhu G M, et al. Scientific Reports, 2015, 5, 10866.
25 Klibanov A L, Shevchenko T I, Raju B I, et al. Journal of Controlled Release, 2010, 148(1), 13.
26 Yim H J, Kwak H G, Kim J H. Nondestructive Testing and Evaluation, 2012, 27(1), 81.
27 Wan P, Wu S P, Liu Q T, et al. Construction and Building Materials, 2021, 310, 125258.
28 Loiseau E, de Boiry A Q, Niedermair F, et al. Advanced Functional Materials, 2016, 26(22), 4007.
29 Van Tittelboom K, Wang J Y, Araujo M, et al. Construction and Building Materials, 2016, 107, 125.
30 Sinha A, Lim D Z H, Wei J Q. Cement & Concrete Composites, 2022, 132, 104643.
31 de Oliveira T A, Braganca M D G P, Pinkoski I M, et al. Construction and Building Materials, 2021, 300, 124010.
32 Araujo M, Chatrabhuti S, Gurdebeke S, et al. Cement & Concrete Composites, 2018, 89, 260.
33 Feng J H, Dong H, Wang R X, et al. Cement and Concrete Research, 2020, 133, 106053.
34 Ullah H, Azizli K A M, Man Z B, et al. Polymer Reviews, 2016, 56(3), 429.
35 Wool R. Soft Matter, DOI: 10.1039/B711716G.
36 Choi Y W, Oh S R, Choi B K. Advances in Materials Science and Engineering, 2017, 2017, 5187543.
37 Mehta P K. Concrete International, 1999, 21, 47.
38 Sun D W, An J L, Wu G, et al. Journal of Materials Chemistry A, 2015, 3(8), 4435.
39 Beglarigale A, Seki Y, Demir N Y, et al. Construction and Building Materials, 2018, 162, 57.
40 Tan N P B, Keung L H, Choi W H, et al. Journal of Applied Polymer Science, 2016, 133(12), 43090.
41 Li W T, Zhu X J, Zhao N, et al. Materials, 2016, 9(3), 152.
42 Kanellopoulos A, Qureshi T S, Al-Tabbaa A. Construction and Building Materials, 2015, 98, 780.
43 Xu J, Wang X, Zuo J, et al. Advances in Materials Science and Engineering, 2018, 2018, 1.
44 Zhang J G, Liu Y Z, Feng T, et al. Construction and Building Materials, 2017, 148, 610.
45 Anglani G, Tulliani J M, Antonaci P. Materials, 2020, 13(5), 1149.
46 Formia A, Terranova S, Antonaci P, et al. Materials, 2015, 8(4), 1897.
47 Hilloulin B, Van Tittelboom K, Gruyaert E, et al. Cement & Concrete Composites, 2015, 55, 298.
48 Gruyaert E, Van Tittelboom K, Sucaet J, et al. Materiales De Construccion, 2016, 66(323), 119039.
49 Wang X, Chen S, Yang Z, et al. Construction and Building Materials, 2021, 301, 124119.
50 Rais M S, Khan R A. Construction and Building Materials, 2021, 306, 124901.
51 Hu Z X, Hu X M, Cheng W M, et al. Construction and Building Materials, 2018, 179, 151.
52 Qureshi T S, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2016, 121, 629.
53 Gao J, Jin P, Zhang Y, et al. Cement and Concrete Composites, 2022, 133, 104711.
54 Song G, Ma N, Li H N. Engineering Structures, 2006, 28(9), 1266.
55 Sun L, Liang D, Gao Q, et al. Mathematical Problems in Engineering, 2013, 2013, 138162.
56 Sakai Y, Kitagawa Y, Fukuta T, et al. Proceedings of SPIE, DOI:10.1117/12.482680.
57 Chen W, Feng K, Wang Y, et al. Construction and Building Materials, 2021, 290, 123216.
58 Bonilla L, Hassan M M, Noorvand H, et al. Journal of Materials in Civil Engineering, 2018, 30(2), 04017277.
59 Huang B N, Chen F F, Shen Y, et al. Nanomaterials, 2018, 8(2), 102.
60 Antipina M N, Kiryukhin M V, Skirtach A G. International Materials Reviews, DOI: 10.1179/1743280414Y.0000000030.
61 Lu T, Li B, Sun D, et al. Journal of Cleaner Production, 2021, 294, 126270.
62 Matsuda T, Jadhav N, Kashi K B, et al. Progress in Organic Coatings, 2016, 90, 425.
63 He Y, Xu W, Tang R, et al. RSC Advances, 2015, 5, 90609.
64 Ress J, Martin U, Bosch J, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 46686.
65 Alghamri R, Kanellopoulos A, Al-Tabbaa A. Construction and Building Materials, 2016, 124, 910.
66 Snoeck D, De Belie N. Journal of Materials in Civil Engineering, 2015, 04015086, 1.
67 Jonkers H M. In: Springer series in materials science, Hull R, Jagadish C, Kawazoe Y, ed., Springer Netherlands, Dordrecht, 2007, pp.195.
68 Rao M V S, Reddy V S, Sasikala C. Journal of The Institution of Engineers (India), Series A, 2017, 98(4), 501.
69 Chu J, Stabnikov V, Ivanov V. Geomicrobiology Journal, 2012, 29(6), 544.
70 Nodehi M, Ozbakkaloglu T, Gholampour A. Journal of Building Engineering, 2022, 49, 104038.
71 Xu J, Wang X Z, Wang B B. Applied Microbiology and Biotechnology, 2018, 102(7), 3121.
72 Ogutu F O, Mu T, Elahi R, et al. Journal of Food Processing and Technology, 2015, 6, 1000446.
73 Xu N, Song Z J, Guo M Z, et al. Cement & Concrete Composites, 2021, 118, 103951.
74 Li Y, Yu J Y, Cao Z L, et al. Construction and Building Materials, 2020, 265, 120703.
75 Hager I. Bulletin of the Polish Academy of Sciences Technical Sciences, 2013, 61(1), 1.
76 Gorin D A, Shchukin D G, Mikhailov A I, et al. Technical Physics Letters, 2006, 32(1), 70.
77 Del Mercato L, González E, Abbasi A, et al. Journal of Materials Chemistry, 2011, 21, 11468.
78 Deng X K, Ren Y K, Hou L K, et al. Acs Applied Materials & Interfaces, 2018, 10(46), 40228.
79 Deng X K, Ren Y K, Hou L K, et al. Small, 2019, 15(42), 1903098.
80 Li Y, Yu J, Cao Z, et al. Construction and Building Materials, 2021, 304, 124616.
81 Lv L Y, Guo P Y, Xing F, et al. Construction and Building Materials, 2020, 235, 117443.
82 Mihashi H, Kaneko Y, Nishiwaki T, et al. Concrete Research and Technology, 2000, 11, 21.
83 Van Tittelboom K, De Belie N, Van Loo D, et al. Cement and Concrete Composites, 2011, 33(4), 497.
84 Dong B, Fang G, Ding W, et al. Construction and Building Materials, 2016, 106, 608.
85 Arce G A, Hassan M M, Mohammad L N, et al. Journal of Materials in Civil Engineering, 2017, 29(1), 04016189.
86 Giannaros P, Kanellopoulos A, Al-Tabbaa A. Smart Materials and Structures, 2016, 25(8), 084005.
87 Tang W, Kardani O, Cui H. Construction and Building Materials, 2015, 81, 233.
88 Ariffin N F, Hussin M, Sam A R M, et al. Jurnal Teknologi, DOI: 10.11113/jt.v77.6306.
89 Du W, Yu J, Gu S, et al. Construction and Building Materials, 2020, 247, 118575.
90 Lv L Y, Guo P Y, Liu G, et al. Cement & Concrete Composites, 2020, 105, 103445.
91 Zhang H, Qi C J, Chen W, et al. Construction and Building Materials, 2021, 279, 122439.
92 Shao L J, Feng P, Zuo W Q, et al. Cement & Concrete Composites, 2022, 128, 104456.
93 Jefferson T, Javierre E, Freeman B, et al. Advanced Materials Interfaces, 2018, 5(17), 1701378.
94 Mookhoek S D, Fischer H R, van der Zwaag S. Computational Materials Science, 2009, 47(2), 506.
95 Zemskov S V, Jonkers H M, Vermolen F J. Computational Materials Science, 2011, 50(12), 3323.
96 Lv Z, Chen H, Yuan H. Materials and Structures/Materiaux et Constructions, 2011, 44, 987.
97 Lv Z, Chen H S. Computational Materials Science, 2013, 68, 81.
98 Lv Z, Chen H, Yuan H. Science and Engineering of Composite Materials, 2011, 18, 13.
99 Lv Z, Chen H S, Yuan H F. Journal of Intelligent Material Systems and Structures, 2014, 25(1), 47.
100 Lv L Y, Zhang H Z, Schlangen E, et al. Construction and Building Materials, 2017, 156, 219.
101 Herbst O, Luding S. International Journal of Fracture, 2008, 154(1-2), 87.
102 Li W T, Jiang Z W, Yang Z H. Materials, 2017, 10(6), 589.
103 Caggiano A, Etse G, Ferrara L, et al. Computers & Structures, 2017, 186, 22.
104 Chen Q, Li W, Jiang Z. Journal of Building Engineering, 2022, 58, 104995.
105 Hilloulin B, Grondin F, Matallah M, et al. Cement and Concrete Research, 2014, 61.
106 Davies R, Jefferson A. International Journal of Solids and Structures, 2017, 113, 180.
107 Huang H L, Ye G. Cement & Concrete Composites, 2012, 34(4), 460.
108 Zemskov S V, Jonkers H M, Vermolen F J. Journal of Intelligent Material Systems and Structures, 2014, 25(1), 4.
109 Algaifi H A, Abu Bakar S, Sam A R M, et al. Construction and Building Materials, 2018, 189, 816.
110 Granger S, Loukili A, Pijaudier-Cabot G, et al. Cement and Concrete Research, 2007, 37, 519.
111 Mergheim J, Steinmann P. Computational Mechanics, DOI:10.1007/s00466-013-0840-0.
112 Davies R, Jefferson A. International Journal of Solids and Structures, 2017, 113, 180.
113 Herbst O, Luding S. International Journal of Fracture, 154 (1-2), 2008, 154, 87.
114 Zhu H, Zhou S, Yan Z, et al. International Journal of Damage Mechanics, DOI:10.1177/1056789514522503.
115 Han K, Ju J W, Zhu Y, et al. International Journal of Damage Mechanics, DOI:10.1177/10567895211011239.
116 Lv Z, Yao J, Cui G, et al. Applied Mathematical Modelling, 2022, 101, 406.
117 Wu X T, Huang H L, Liu H, et al. Materials Letters, 2021, 283, 128884.
118 Zhou Y, Elchalakani M, Du P, et al. Cement and Concrete Composites, 2023, 135, 104816.
119 Roig-Flores M, Moscato S, Serna P, et al. Construction and Building Materials, 2015, 86, 1.
120 Chandra Sekhara Reddy T, Ravitheja A. Ain Shams Engineering Journal, 2019, 10(1), 23.
121 Gao J, Jin P, Zhang Y Z, et al. Cement & Concrete Composites, 2022, 133, 104711.
122 Yuan B, Yang Y, Wang Y, et al. Construction and Building Materials, 2017, 146, 563.
123 Dong B, Ding W, Qin S, et al. Cement and Concrete Composites, 2018, 85, 83.
[1] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[2] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[3] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[4] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[5] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[6] 申爱琴, 陈荣伟, 郭寅川, 范建航, 戴晓倩, 丑涛. 季冻区纳米SiO2改性SAP路面混凝土的耐磨性[J]. 材料导报, 2024, 38(7): 23010093-6.
[7] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[10] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[11] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[12] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[13] 姚未来, 刘元雪, 孙涛, 赵宏刚, 穆锐, 雷屹欣. 采用局域共振超材料混凝土提升结构消波防护性能:综述和展望[J]. 材料导报, 2024, 38(5): 23080236-14.
[14] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[15] 程雨竹, 马林建, 王磊, 耿汉生, 高康华, 谭仪忠. 冲击荷载作用下改性聚丙烯纤维高强珊瑚混凝土的动力特性[J]. 材料导报, 2024, 38(5): 23070191-7.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed