Please wait a minute...
材料导报  2024, Vol. 38 Issue (20): 23080238-8    https://doi.org/10.11896/cldb.23080238
  无机非金属及其复合材料 |
B掺杂对金刚石热导率的影响
赵永生1,2, 阎峰云1,*, 刘雪3
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州工业学院机电工程学院,兰州 730050
3 兰州理工大学石油化工学院,兰州 730050
Effect of B Doping on Thermal Conductivity of Diamond
ZHAO Yongsheng1,2, YAN Fengyun1,*, LIU Xue3
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Mechatronics Engineering, Lanzhou Institute of Technology, Lanzhou 730050, China
3 School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 4442KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属基金刚石复合材料因其高导热率和低热膨胀系数而备受关注,掺B被广泛应用于改性金刚石表面。因此,有必要深入探究B掺杂对金刚石导热特性的影响。通过第一性原理计算,系统研究了金刚石掺杂B后的多项关键性质,包括电子特性、晶格振动、热力学性能、晶格热导率、声子群速度、声子自由程和声子寿命等。结果显示,当B掺杂浓度为12.5%(如无特别说明,均为原子分数)时,金刚石的热传输特性发生显著改变,最大晶格热导率降至452 W·m-1·K-1。其主要原因是引入B原子后,形成的C-B化合键为弱极性,导致金刚石的晶格振动不协调,晶格振动的简并现象消失,这意味着金刚石晶体的动力学稳定性被破坏。同时,掺杂B导致金刚石内部声子自由程由104 nm降低为102 nm,声子寿命由80 ps缩短为6 ps。本研究揭示了掺杂B原子对金刚石导热特性的影响机制,可为材料设计和应用提供有益的理论指导。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵永生
阎峰云
刘雪
关键词:  金刚石  B掺杂  热导率  第一性原理    
Abstract: Metal matrix diamond composites have gained significant attention due to their high thermal conductivity and low coefficient of thermal expansion. Boron doping is widely applied to modify the surface of diamonds. Therefore, it is necessary to investigate in-depth the impact of boron doping on the thermal conductivity properties of diamond. In this study, we conducted a systematic examination of various key properties of B-doped diamond using first-principles calculations. These properties encompass electronic characteristics, lattice vibrations, thermodynamic behavior, lattice thermal conductivity, phonon velocities, phonon mean free paths, and phonon lifetimes. (Our findings shed light on the intricate relationship between B doping and thermal behavior of diamond). Our results reveal that when the B doping concentration reaches 12.5at%, thermal transport characteristics of diamond undergo significant alterations, leading to a substantial decrease in the maximum lattice thermal conductivity to 452 W·m-1·K-1. This change can be primarily attributed to the introduction of weakly polar C-B bonds by B atoms, disrupting lattice vibrations and eliminating lattice vibration degeneracy. As a consequence, these alterations affect lattice vibration properties and dynamic stability, ultimately impacting thermal transport. Furthermore, B doping has a noticeable impact on phonon behavior. Internal phonon mean free paths are reduced from 104 nm to 102 nm, resulting in diminished phonon propagation distances. Phonon lifetimes also experience a prominent reduction from 80 ps to as low as 6 ps due to the perturbation of lattice vibrations. This study provides in-depth insights into the mechanisms underlying the impact of B atom doping on thermal conductivity of diamond. The findings can offer valuable theoretical guidance for material design and applications (By elucidating these aspects, this research contributes to advancing the understanding of diamond materials and refining their utilization in various fields).
Key words:  diamond    doping B    thermal conductivity    first principles
出版日期:  2024-10-25      发布日期:  2024-11-05
ZTFLH:  TB131  
基金资助: 甘肃省教育厅产业支撑计划项目(2021CYZC-34);甘肃省高等学校创新基金(2021B-310)
通讯作者:  * 阎峰云,兰州理工大学材料科学与工程学院教授、博士研究生导师。1983年7月毕业于甘肃工业大学,获工学学士学位,同年留校任教至今。1993年5月毕业于西安交通大学,获工学硕士学位。目前主要从事金属基复合材料等方面的研究工作。发表论文60余篇,主持省级以上项目10余项,其中获省部级科技成果奖5项。yanfy@lut.edu.cn   
作者简介:  赵永生,2015年6月于兰州理工大学获得工学硕士学位。现为兰州理工大学材料科学与工程学院博士研究生,在阎峰云教授的指导下进行研究。目前主要研究领域为金刚石复合材料的热导率调控。
引用本文:    
赵永生, 阎峰云, 刘雪. B掺杂对金刚石热导率的影响[J]. 材料导报, 2024, 38(20): 23080238-8.
ZHAO Yongsheng, YAN Fengyun, LIU Xue. Effect of B Doping on Thermal Conductivity of Diamond. Materials Reports, 2024, 38(20): 23080238-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080238  或          http://www.mater-rep.com/CN/Y2024/V38/I20/23080238
1 Stachel T, Luth R W. Lithos, 2015, 220-223, 200.
2 Bulanova G P. Journal of Geochemical Exploration, 1995, 53(1-3), 1.
3 Zollner S, Cardona M, Gopalan S. Physical Review B, 1992, 45(7), 3376.
4 Zhao Y, Yan F, An Y. Coatings, 2022, 12(5), 619.
5 Isberg J, Hammersberg J, Johansson E, et al. Science, 2002, 297(5587), 1670.
6 Isberg J, Lindblom A, Tajani A, et al. Physica Status Solidi (A), 2005, 202(11), 2194.
7 Wort C J H, Balmer R S. Materials Today, 2008, 11(1-2), 22.
8 May P W. Physical and Engineering Sciences, 2000, 358(1766), 473.
9 Liao M. Functional Diamond, 2021, 1(1), 29.
10 Dai S, Li J, Lu N. Diamond and Related Materials, 2020, 108, 107993.
11 Wu Y, Luo J, Wang Y, et al. Ceramics International, 2019, 45(10), 13225.
12 Stoll H. Physical Review B, 1992, 46(11), 6700.
13 Telling R H, Pickard C J, Payne M C, et al. Physical Review Letters, 2000, 84(22), 5160.
14 Zhang K, Wang H, Shao G, et al. Ceramics International, 2019, 45(7), 9271.
15 Han J, X Yang, Y Ren, et al. Journal of Physics:Condensed Matter, 2023, 35(11), 115001.
16 Hutton L A, Iacobini J G, Bitziou E, et al. Analytical Chemistry, 2013, 85(15), 7230.
17 Kondo T. Current Opinion in Electrochemistry, 2022, 32, 100891.
18 Achard J, Silva F, Issaoui R, et al. Diamond and Related Materials, 2011, 20(2), 145.
19 Volpe P N, Pernot J, Muret P, et al. Applied Physics Letters, 2009, 94(9), 092102.
20 Blase X, Adessi C, Connétable D. Physical Review Letters, 2004, 93(23), 237004.
21 Lee K W, Pickett W E. Physical Review Letters, 2004, 93(23), 237003.
22 Gonze X, Amadon B, Antonius G, et al. Computer Physics Communications, 2020, 248, 107042.
23 Romero A H, Allan D C, Amadon B, et al. The Journal of Chemical Physics, 2020, 152(12), 124102.
24 Gonze X, Jollet F, Abreu A F, et al. Computer Physics Communications, 2016, 205, 106.
25 Gonze X, Amadon B, Anglade P M, et al. Computer Physics Communications, 2009, 180(12), 2582.
26 Torrent M, Jollet F, Bottin F, et al. Computational Materials Science, 2008, 42(2), 337.
27 Togo A, Tanaka I. Scripta Materialia, 2015, 108, 1.
28 Togo A, Chaput L, Tanaka I. Physical Review B, 2015, 91(9), 094306.
29 Chaput L. Physical Review Letters, 2013, 110(26), 265506.
30 Momma K, Izumi F. Journal of Applied Crystallography, 2011, 44(6), 1272.
31 Zhao Y, Yan F, Liu X, et al. Nanomaterials, 2022, 12(19), 3399.
32 Zhao Y, Yan F, Liu X. Diamond and Related Materials, 2023, 136, 110016.
33 Shindé S L, Goela J S. High thermal conductivity materials, New York, Springer-Verlag, USA, pp, 2006.
34 Ward A, Broido D A, Stewart D A, et al. Physical Review B - Condensed Matter and Materials Physics, 2009, 80(12), 1.
35 Fugallo G, Lazzeri M, Paulatto L, et al. Physical Review B - Condensed Matter and Materials Physics, 2013, 88(4), 1.
36 Warren J L, Yarnell J L, Dolling G, et al. Physical Review, 1967, 158(3), 805.
37 Klein C A, Hartnett T M, Robinson C J. Physical Review B, 1992, 45(22), 12854.
38 Kane E O. Physical Review B, 1985, 31(12), 7865.
39 Schwoerer-Böhning M, Macrander A T, Arms D A. Physical Review Letters, 1998, 80(25), 5572.
40 Peckham G. Solid State Communications, 1967, 5(4), 311.
41 Williams G, Calvo J A, Faili F, et al. In:17th IEEE Intersociety Confe-rence on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm). USA, 2018, pp.235.
[1] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[2] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[3] 徐东, 金天, 王朋波, 程战. Gd改性Ni-Cr钎料钎焊金刚石组织和性能研究[J]. 材料导报, 2024, 38(19): 23070245-5.
[4] 王勇, 孙天昊, 李永存, 孙丽丽, 贾鑫, 张旭昀. 高压下NbMoTaWV难熔高熵合金结构和力学性能的第一性原理研究[J]. 材料导报, 2024, 38(18): 22120037-6.
[5] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[6] 王媛媛, 张璐, 程洗洗, 钱麒, 徐欢, 徐华, 杨雪舟, 杨波波, 邹军. 立方砷化硼晶体生长、性能及应用研究进展[J]. 材料导报, 2024, 38(17): 22110207-10.
[7] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[8] 彭超, 赵勇, 张芳, 龙旭, 林金保, 常超. TixNbMoTaW系高熵合金性能的第一性原理计算[J]. 材料导报, 2024, 38(15): 23040229-8.
[9] 张琦祥, 苑峻豪, 李震, 李文杰, 孙丹, 王清, 董闯. 基于第一性原理计算的固溶体合金集成学习设计方法[J]. 材料导报, 2024, 38(13): 23030089-8.
[10] 王梓霄, 熊良涛, 李浩源. 共价有机框架材料的热导和热电应用研究进展[J]. 材料导报, 2024, 38(12): 24040129-8.
[11] 生健平, 喻明富, 李洁, 孙红. 基于V2C催化剂的混合电解质锂空气电池催化机理研究[J]. 材料导报, 2024, 38(10): 23030161-7.
[12] 呼丹明, 段锋, 丁冬海, 李杰, 尹育航, 彭凯. 不烧滑板磨削加工用Fe-Ni-Cu-Sn金属基金刚石工具的制备与性能[J]. 材料导报, 2024, 38(10): 22100199-7.
[13] 刘晨曦, 庞国旺, 潘多桥, 史蕾倩, 张丽丽, 雷博程, 赵旭才, 黄以能. S和Al掺杂单层g-C3N4电子结构与光学性质的第一性原理研究[J]. 材料导报, 2023, 37(9): 21100044-6.
[14] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[15] 刘震, 尹育航, 敬臣, 武美玲, 陶洪亮, 程彦强. 磨粒有序分布对金刚石锯片切割性能的影响[J]. 材料导报, 2023, 37(8): 21070268-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed