Fabrication of Catalytic Carbon Membranes and Their Intensification of Hydrogen Production Reaction from Methanol Steam Reforming
WANG Erwen1, ZHANG Bing1,*, LI Xinming1, JIANG Yuan1, WU Yonghong1, WANG Tonghua2
1 School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, China 2 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
Abstract: Steam reforming of methanol (SRM) is an important distributed hydrogen production technology. However, the conversion and yield of traditional reactors are quite inferior due to the constraints of thermodynamic equilibrium and kinetics. Here, catalytic carbon membranes were integrated in the reaction process to strengthen SRM reaction by virtue of the combination effects of catalysis and separation. The chemical structure, microcrystal structure, chemical elements, microscopic morphology and porous structure of the membrane materials were characterized by means of infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and bubble pressure method, respectively. The effects of carbon membrane microstructure, reaction temperature and other factors on the conversion and yield of SRM reaction were investigated. The results show that the integration of catalytic carbon membranes during reaction process significantly enhances the efficiency of SRM reaction. As the reaction temperature increases, the methanol conversion increases, while the hydrogen yield first increases then decreases. When the reaction temperature is 240 ℃, the hydrogen yield is increased by 1.7 times compared to conventional fixed bed.
汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
WANG Erwen, ZHANG Bing, LI Xinming, JIANG Yuan, WU Yonghong, WANG Tonghua. Fabrication of Catalytic Carbon Membranes and Their Intensification of Hydrogen Production Reaction from Methanol Steam Reforming. Materials Reports, 2023, 37(17): 22010107-5.
1 Atilhan S, Park S, El-Halwagi M, et al. Current Opinion in Chemical Engineering, 2021, 31, 100668. 2 Zhang B, Zhang S X, Yao R, et al. Journal of Electronic Science and Technology, 2021, 19(2), 100080. 3 Gopinath C S, Nalajala N A. Journal of Materials Chemistry A, 2019, 9, 1353. 4 Kannah R Y, Kavitha S, Karthikeyan O P, et al. Bioresource Technology, 2021, 319, 124175. 5 Zhang L, Hu X, Hu K, et al. Journal of Power Sources, 2018, 403, 137. 6 Tya A, Kg B, Ai C. Chemical Engineering and Processing-Process Intensification, 2020, 157, 108148. 7 Palo D R, Dagle R A, Holladay J D. Chemical Reviews, 2007, 107(10), 3992. 8 Liu G, Jin W, Xu N. Chemical Society Reviews, 2015, 44, 5016. 9 Sá S, Silva H, Sousa J M, et al. Journal of Membrane Science, 2009, 339(1-2), 160. 10 Itoh N, Haraya K. Catalysis Today, 2000, 56(1-3), 103. 11 Sheintuch S M. Chemical Engineering Science, 2004, 59(10), 2013. 12 Hirota Y, Ishikado A, Uchida Y, et al. Journal of Membrane Science, 2013, 440, 134. 13 Wu Y, Yao R, Zhang X, et al. Journal of Environmental Chemical Engineering, 2021, 9(3), 105164. 14 Zhang B, Yang C, Zheng Y, et al. Journal of Membrane Science, 2021, 627, 119239. 15 Zhang B, Zhang S, Wu Y, et al. Chemical Engineering and Processing-Process Intensification, 2021, 169, 108620. 16 Zhang B, Wang D, Zhou J, et al. Energy Technology, 2017, 5(11), 1990. 17 Garcia G, Arriola E, Chen W-H, et al. Energy, 2021, 217, 119384. 18 Huang Z, Cui F, Kang H, et al. Chemistry of Materials, 2008, 20(15), 5090. 19 Myung Y, Jang D M, Sung T K, et al. ACS Nano, 2010, 4(7), 3789. 20 Yan L, Wang Y, Xiong L, et al. Chinese Journal of Inorganic Chemistry, 2009, 35(11), 1960 (in Chineses). 闫丽丽, 王艳, 熊良斌, 等. 无机化学学报, 2009, 35(11), 1960. 21 Cai F, Lu P, Ibrahim J J, et al. International Journal of Hydrogen Energy, 2019, 44(23), 11717. 22 Li H, Tian H, Chen S, et al. Applied Catalysis B:Environmental, 2020, 276, 119052. 23 Bossola F, Scotti N, Somodi F, et al. Applied Catalysis B:Environmental, 2019, 258, 118016. 24 Yang H M, Chan M K. Catalysis Communications, 2011, 12(15), 1389. 25 Mamivand S, Binazadeh M, Sohrabi R. Journal of Industrial and Engineering Chemistry, 2021, 104, 212. 26 Amiri T Y, Ghasemzageh K, Iulianelli A. Chemical Engineering and Processing-Process Intensification, 2020, 157, 108148. 27 Shifa T A, Vomiero A. Advanced Energy Materials, 2019, 9(40), 1902307. 28 Cuadrado-Collados C, Majid A A A, Martínez-Escandell M, et al. Carbon, 2020, 158, 346. 29 Xu M, Lai C, Liu X, et al. Journal of Materials Chemistry A, 2021, 9, 24148. 30 Talaghat M R, Naamaki N. International Journal of Hydrogen Energy, 2021, 46(2), 2282. 31 Tampaxis C, Steriotis T A, Katsaros F K, et al. Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques, 2020, 14, S221. 32 Wu L, Ni B, Chen R, et al. Journal of Materials Chemistry A, 2020, 8, 21026. 33 Zhang B, Zhao D, Wu Y, et al. Industrial & Engineering Chemistry Research, 2015, 54(2), 623. 34 Purnama H, Ressler T, Jentoft R E, et al. Applied Catalysis A:General, 2004, 259(1), 83. 35 Valdés-Solís T, Marbán G, Fuertes A B. Catalysis Today, 2006, 116(3), 354.