Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22010107-5    https://doi.org/10.11896/cldb.22010107
  高分子与聚合物基复合材料 |
催化炭膜制备及其强化甲醇水蒸气重整制氢反应
汪尔文1, 张兵1,*, 李欣明1, 江园1, 吴永红1, 王同华2
1 沈阳工业大学石油化工学院,辽宁 辽阳 111003
2 大连理工大学化工学院,辽宁 大连 116024
Fabrication of Catalytic Carbon Membranes and Their Intensification of Hydrogen Production Reaction from Methanol Steam Reforming
WANG Erwen1, ZHANG Bing1,*, LI Xinming1, JIANG Yuan1, WU Yonghong1, WANG Tonghua2
1 School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003, Liaoning, China
2 School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
下载:  全 文 ( PDF ) ( 9656KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 甲醇水蒸气重整(SRM)是重要的分布式制氢技术,然而受热力学平衡和动力学的限制,传统反应器的转化率和收率较低。本工作通过在反应过程中耦合催化炭膜,凭借其催化和分离联合作用实现强化SRM反应效果。采用红外光谱、X射线衍射、X光电子能谱、扫描电镜和泡压法等手段对膜材料的化学结构、微晶结构、化学元素、微观形貌和孔隙结构等进行了表征。考察了炭膜微结构、反应温度等因素对SRM反应的转化率和收率影响。结果显示:反应过程中耦合催化炭膜,显著强化了SRM反应效果;随反应温度升高,甲醇转化率增大,而氢气收率先升后降;当反应温度为240 ℃时,氢气收率比固定床反应器提高1.7倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪尔文
张兵
李欣明
江园
吴永红
王同华
关键词:  制氢  甲醇水蒸气重整  膜分离  催化剂    
Abstract: Steam reforming of methanol (SRM) is an important distributed hydrogen production technology. However, the conversion and yield of traditional reactors are quite inferior due to the constraints of thermodynamic equilibrium and kinetics. Here, catalytic carbon membranes were integrated in the reaction process to strengthen SRM reaction by virtue of the combination effects of catalysis and separation. The chemical structure, microcrystal structure, chemical elements, microscopic morphology and porous structure of the membrane materials were characterized by means of infrared spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscope and bubble pressure method, respectively. The effects of carbon membrane microstructure, reaction temperature and other factors on the conversion and yield of SRM reaction were investigated. The results show that the integration of catalytic carbon membranes during reaction process significantly enhances the efficiency of SRM reaction. As the reaction temperature increases, the methanol conversion increases, while the hydrogen yield first increases then decreases. When the reaction temperature is 240 ℃, the hydrogen yield is increased by 1.7 times compared to conventional fixed bed.
Key words:  hydrogen production    methanol steam reforming    membrane separation    catalyst
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TK91  
基金资助: 国家自然科学基金(20906063);辽宁省自然科学基金项目(2021-MS-238);辽宁省教育厅项目(LJGD2020002);沈阳中青年科技创新项目(RC200325)
通讯作者:  *张兵,2007年4月毕业于大连理工大学化学工艺专业,获工学博士学位,现任沈阳工业大学石油化工学院教授、博士研究生导师,入选辽宁省百千万人才工程百人层次、辽宁省高校优秀人才。主要从事催化材料、膜分离材料、多孔材料、制氢、气体净化与废水处理等方面研究。主持国家自然科学基金、辽宁省自然科学基金等省部级以上科研课题10余项;发表论文100余篇,包括Carbon、J Membr Sci、Ind Eng Chem Res、Energy Tech、J Water Proc Eng、J Envir Chem Eng、Micropor Mesopor Materials、Desalination、Sep Purif Tech等。zhangbing@sut.edu.cn   
作者简介:  汪尔文,2020年7月于沈阳工业大学获得工学学士学位。现为沈阳工业大学石油化工学院硕士研究生,在张兵教授的指导下进行研究。目前主要研究领域为催化功能炭膜制备及强化制氢。
引用本文:    
汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
WANG Erwen, ZHANG Bing, LI Xinming, JIANG Yuan, WU Yonghong, WANG Tonghua. Fabrication of Catalytic Carbon Membranes and Their Intensification of Hydrogen Production Reaction from Methanol Steam Reforming. Materials Reports, 2023, 37(17): 22010107-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22010107  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22010107
1 Atilhan S, Park S, El-Halwagi M, et al. Current Opinion in Chemical Engineering, 2021, 31, 100668.
2 Zhang B, Zhang S X, Yao R, et al. Journal of Electronic Science and Technology, 2021, 19(2), 100080.
3 Gopinath C S, Nalajala N A. Journal of Materials Chemistry A, 2019, 9, 1353.
4 Kannah R Y, Kavitha S, Karthikeyan O P, et al. Bioresource Technology, 2021, 319, 124175.
5 Zhang L, Hu X, Hu K, et al. Journal of Power Sources, 2018, 403, 137.
6 Tya A, Kg B, Ai C. Chemical Engineering and Processing-Process Intensification, 2020, 157, 108148.
7 Palo D R, Dagle R A, Holladay J D. Chemical Reviews, 2007, 107(10), 3992.
8 Liu G, Jin W, Xu N. Chemical Society Reviews, 2015, 44, 5016.
9 Sá S, Silva H, Sousa J M, et al. Journal of Membrane Science, 2009, 339(1-2), 160.
10 Itoh N, Haraya K. Catalysis Today, 2000, 56(1-3), 103.
11 Sheintuch S M. Chemical Engineering Science, 2004, 59(10), 2013.
12 Hirota Y, Ishikado A, Uchida Y, et al. Journal of Membrane Science, 2013, 440, 134.
13 Wu Y, Yao R, Zhang X, et al. Journal of Environmental Chemical Engineering, 2021, 9(3), 105164.
14 Zhang B, Yang C, Zheng Y, et al. Journal of Membrane Science, 2021, 627, 119239.
15 Zhang B, Zhang S, Wu Y, et al. Chemical Engineering and Processing-Process Intensification, 2021, 169, 108620.
16 Zhang B, Wang D, Zhou J, et al. Energy Technology, 2017, 5(11), 1990.
17 Garcia G, Arriola E, Chen W-H, et al. Energy, 2021, 217, 119384.
18 Huang Z, Cui F, Kang H, et al. Chemistry of Materials, 2008, 20(15), 5090.
19 Myung Y, Jang D M, Sung T K, et al. ACS Nano, 2010, 4(7), 3789.
20 Yan L, Wang Y, Xiong L, et al. Chinese Journal of Inorganic Chemistry, 2009, 35(11), 1960 (in Chineses).
闫丽丽, 王艳, 熊良斌, 等. 无机化学学报, 2009, 35(11), 1960.
21 Cai F, Lu P, Ibrahim J J, et al. International Journal of Hydrogen Energy, 2019, 44(23), 11717.
22 Li H, Tian H, Chen S, et al. Applied Catalysis B:Environmental, 2020, 276, 119052.
23 Bossola F, Scotti N, Somodi F, et al. Applied Catalysis B:Environmental, 2019, 258, 118016.
24 Yang H M, Chan M K. Catalysis Communications, 2011, 12(15), 1389.
25 Mamivand S, Binazadeh M, Sohrabi R. Journal of Industrial and Engineering Chemistry, 2021, 104, 212.
26 Amiri T Y, Ghasemzageh K, Iulianelli A. Chemical Engineering and Processing-Process Intensification, 2020, 157, 108148.
27 Shifa T A, Vomiero A. Advanced Energy Materials, 2019, 9(40), 1902307.
28 Cuadrado-Collados C, Majid A A A, Martínez-Escandell M, et al. Carbon, 2020, 158, 346.
29 Xu M, Lai C, Liu X, et al. Journal of Materials Chemistry A, 2021, 9, 24148.
30 Talaghat M R, Naamaki N. International Journal of Hydrogen Energy, 2021, 46(2), 2282.
31 Tampaxis C, Steriotis T A, Katsaros F K, et al. Journal of Surface Investigation:X-ray, Synchrotron and Neutron Techniques, 2020, 14, S221.
32 Wu L, Ni B, Chen R, et al. Journal of Materials Chemistry A, 2020, 8, 21026.
33 Zhang B, Zhao D, Wu Y, et al. Industrial & Engineering Chemistry Research, 2015, 54(2), 623.
34 Purnama H, Ressler T, Jentoft R E, et al. Applied Catalysis A:General, 2004, 259(1), 83.
35 Valdés-Solís T, Marbán G, Fuertes A B. Catalysis Today, 2006, 116(3), 354.
[1] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[2] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[5] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[6] 韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
[7] 林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
[8] 张枫烨, 张耀君, 贺攀阳, 高江雨. 新型地质聚合物基分离膜的制备与应用研究进展[J]. 材料导报, 2023, 37(14): 21090154-13.
[9] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[10] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[11] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[12] 阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
[13] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[14] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[15] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed