Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
Abstract: Hydrogen has been recognized as the green energy source and the use of hydrogen energy technologies has gained considerable attention from worldwide researchers and industries. The efficient utilization of hydrogen can be beneficial to the alleviation of global issues such as energy crisis and environment pollution. The catalyzed hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) is a potential route to the controllable generation of hydrogen. This catalytic reaction also has the advantages of mild reaction conditions and environmental friendliness, which make it one of the research hotspots in the field of hydrogen energy. Catalyst is a crucial factor determining the hydrogen generation efficiency of ammonia borane. This review includes an introduction of the structure, properties and synthesis of ammonia borane, a comprehensive description of the recent progress in the research of relevant catalysts with high (or potentially high) activities, as well as a brief discussion on challenges and future development trends.
1 Sartbaeva A, Kuznetsov V L, Wells S A, et al. Energy & Environmental Science, 2008, 1(1), 79. 2 Lai Q, Paskevicius M, Sheppard D A, et al. ChemSusChem, 2015, 8(17), 2789. 3 Yu X B, Tang Z W, Sun D L, et al. Progress in Materials Science, 2017, 88, 1. 4 Ouyang L, Jiang J, Chen K, et al. Nano-Micro Leterst, 2021, 13(1), 134. 5 Cao Z J, Ouyang L Z, Felderhoff M, et al. RSC Advances, 2020, 10(32), 19027. 6 Yao Q L, Ding Y Y, Lu Z H. Inorganic Chemistry Frontiers, 2020, 7(20), 3837. 7 Yao Q L, Du H X, Lu Z H. Progress in Chemistry, 2020, 32(12), 1930. 8 Sun H M, Meng J, Jiao L F, et al. Inorganic Chemistry Frontiers, 2018, 5(4), 760. 9 Klebanoff L E, Keller J O. International Journal of Hydrogen Energy, 2013, 38(11), 4533. 10 Hamad Y M, Hamad T A, Agll A A A, et al. International Journal of Hydrogen Energy, 2014, 39(19), 9943. 11 Koneczna R, Cader J. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2021, 37(3), 53. 12 Wang P, Kang X D. Dalton Transactions, 2008, (40), 5400. 13 Akbayrak S, Ozkar S. International Journal of Hydrogen Energy, 2018, 43(40), 18592. 14 Greene D L, Ogden J M, Lin Z H. eTransportation, 2020, 6, 100086. 15 Wang K, Yao Q L, Qing S J, et al. Journal of Materials Chemistry A, 2019, 7(16), 9903. 16 Zhang Z J, Luo Y X, Liu S W, et al. Journal of Materials Chemistry A, 2019, 7(37), 21438. 17 Li X G, Zhang C L, Luo M H, et al. Inorganic Chemistry Frontiers, 2020, 7(5), 1298. 18 He T, Pachfule P, Wu H, et al. Nature Reviews Materials, 2016, 1(12), 16059. 19 Li Z, He T, Matsumura D, et al. ACS Catalysis, 2017, 7(10), 6762. 20 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1. 21 Li Z, He T, Liu L, et al. Chemical Science, 2017, 8(1), 781. 22 Zhan W W, Zhu Q L, Xu Q. ACS Catalysis, 2016, 6(10), 6892. 23 Alpaydin C Y, Gulbay S K, Colpan C O. International Journal of Hydrogen Energy, 2020, 45(5), 3414. 24 Shore S G, Parry R W. Journal of the American Chemical Society, 1955, 77(22), 6084. 25 Lippert E L, Lipscomb W N. Journal of the American Chemical Society, 1956, (2), 503. 26 Liu Z Q, Marder T B. Angewandte Chemie-International Edition, 2008, 47(2), 242. 27 Stephens F H, Pons V, Tom Baker R T. Dalton Transactions, 2007, (25), 2613. 28 Cya A, Skga B, Coca C. International Journal of Hydrogen Energy, 2020, 45(5), 3414. 29 Shrestha R P, Diyabalanage H V K, Semelsberger T A, et al. International Journal of Hydrogen Energy, 2009, 34(6), 2616. 30 Sit V, Geanangel R A, Wendlandt W W. Thermochimica Acta, 1987, 113(87), 379. 31 Caliskan S, Zahmakiran M, Ozkar S. Applied Catalysis B-Environmental, 2010, 93(3-4), 387. 32 Ramachandran P V, Gagare P D. Inorganic Chemistry, 2007, 46(19), 7810. 33 Yao Q L, Huang M, Lu Z H, et al. Dalton Transactions, 2015, 44(3), 1070. 34 Yamada Y, Yano K, Xu Q A, et al. The Journal of Physical Chemistry C, 2010, 114(39), 16456. 35 Xu Q, Chandra M. Journal of Power Sources, 2006, 163(1), 364. 36 Aijaz A, Karkamkar A, Choi Y J, et al. Journal of the American Chemical Society, 2012, 134(34), 13926. 37 Chen W Y, Ji J, Duan X Z, et al. Chemical Communications, 2014, 50(17), 2142. 38 Akbayrak S, Gencturk S, Morkan I, et al. RSC Advances, 2014, 4(26), 13742. 39 Karahan S, Zahmakiran M, Ozkar S. Chemical Communications, 2012, 48(8), 1180. 40 Tonbul Y, Akbayrak S, Ozkar S. Journal of Colloid and Interface Science, 2019, 553, 581. 41 Yang X C, Sun J K, Kitta M, et al. Nature Catalysis, 2018, 1(3), 214. 42 Li W H, Nie X W, Jiang X, et al. Applied Catalysis B-Environmental, 2018, 220, 397. 43 Wan H J, Wu B S, Xiang H W, et al. ACS Catalysis, 2012, 2(9), 1877. 44 Zhong W D, Tian X K, Yang C, et al. International Journal of Hydrogen Energy, 2016, 41(34), 15225. 45 Zhang M, Liu L, He T, et al. Chemistry-an Asian Journal, 2017, 12(4), 470. 46 Zhu Q L, Li J, Xu Q. Journal of the American Chemical Society, 2013, 135(28), 10210. 47 Zhu B J, Zou R Q, Xu Q. Advanced Energy Materials, 2018, 8(24), 1801193. 48 Perry IV J J, Perman J A, Zaworotko M J. Chemical Society Reviews, 2009, 38(5), 1400. 49 Chandra M, Xu Q. Journal of Power Sources, 2007, 168(1), 135. 50 Yan H, Lin Y, Wu H, et al. Nature Communications, 2017, 8(1), 1070. 51 Li J J, Guan Q Q, Wu H, et al. Journal of the American Chemical Society, 2019, 141(37), 14515. 52 Yang K Z, Zhou L Q, Yu G F, et al. International Journal of Hydrogen Energy, 2016, 41(15), 6300. 53 Cui B Y, Wu G M, Qiu S J, et al. Advanced Sustainable Systems, 2021, 5(10), 2100209. 54 Sun Q M, Wang N, Bai R S, et al. Advances Science, 2019, 6(10), 1802350. 55 Wang H, Xu C L, Chen Q, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(1), 1178. 56 Yao Q L, Shi W M, Feng G, et al. Journal of Power Sources, 2014, 257, 293. 57 Du C, Ao Q, Cao N, et al. International Journal of Hydrogen Energy, 2015, 40(18), 6180. 58 Fan Y R, Li X J, He X C, et al. International Journal of Hydrogen Energy, 2014, 39(35), 19982. 59 Yao Q L, Lu Z H, Yang K K, et al. Scientific Reports, 2015, 5, 15186. 60 Chu H L, Li N P, Qiu X Y, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29255. 61 Liu Y, Yong X, Liu Z Y, et al. Advanced Sustainable Systems, 2019, 3(5), 1800161. 62 Lu R, Xu C L, Wang Q, et al. International Journal of Hydrogen Energy, 2018, 43(39), 18253. 63 Akbayrak S, Ozkar S. ACS Applied Materials Interfaces, 2012, 4(11), 6302. 64 Liu J X, Li P Y, Jiang R F, et al. ChemCatChem, 2021, 13(19), 4142. 65 Chu H L, Li N P, Qiu S J, et al. International Journal of Hydrogen Energy, 2019, 44(3), 1774. 66 Metin O, Ozkar S. Energy & Fuels, 2009, 23(7), 3517. 67 Fang Y, Xiao Z F, Li J L, et al. Angewandte Chemie-Internation Edition, 2018, 57(19), 5283. 68 Wang C L, Tuninetti J, Wang Z, et al. Journal of the American Chemical Society, 2017, 139(33), 11610. 69 Liu P L, Gu X J, Kang K, et al. ACS Applied Materials & Interfaces, 2017, 9(12), 10759. 70 Zhou L M, Meng J, Li P, et al. Materials Horizons, 2017, 4(2), 268. 71 Yang Y W, Feng G, Lu Z H, et al. Acta Physico-Chimica Sinica, 2014, 30(6), 1180. 72 Hu J T, Chen Z X, Li M X, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13191. 73 Metin O, Ozkar S, Sun S H. Nano Research, 2010, 3(9), 676. 74 Li P Z, Aijaz A, Xu Q. Angewandte Chemie-International Edition, 2012, 51(27), 6753. 75 Zhang J K, Chen C Q, Yan W J, et al. Catalysis Science & Technology, 2016, 6(7), 2112. 76 Yao Q L, Lu Z H, Yang Y W, et al. Nano Research, 2018, 11(8), 4412. 77 Metin O, Mazumder V, Ozkar S, et al. Journal of the American Chemical Society, 2010, 132(5), 1468. 78 Slot T K, Yue F, Xu H L, et al. 2D Materials, 2021, 8(1), 015001. 79 Ge Y Z, Qin X T, Li A W, et al. Journal of the American Chemical Society, 2021, 143(2), 628. 80 Zhang X, Zhao Y F, Jia X D, et al. Advanced Energy Materials, 2018, 8(12), 1702780. 81 Liu P, Rodriguez J A. Journal of the American Chemical Society, 2005, 127(42), 14871. 82 Peng C Y, Kang L, Cao S, et al. Angewandte Chemie-International Edition, 2015, 54(52), 15725. 83 Fu Z C, Xu Y, Chan S L F, et al. Chemical Communications, 2017, 53(4), 705. 84 Ma X C, He Y Y, Zhang D X, et al. ChemistrySelect, 2020, 5(7), 2190. 85 Hou C C, Li Q, Wang C J, et al. Energy & Environmental Science, 2017, 10(8), 1770. 86 Zhou X, Meng X F, Wang J M, et al. International Journal of Hydrogen Energy, 2019, 44(10), 4764. 87 Hou C C, Chen Q Q, Li K, et al. Journal of Materials Chemistry A, 2019, 7(14), 8277. 88 Wei L, Yang Y M, Yu Y N, et al. International Journal of Hydrogen Energy, 2021, 46(5), 3811. 89 Qu B, Tao Y, Yang L, et al. International Journal of Hydrogen Energy, 2021, 46(61), 31324. 90 Liao J Y, Feng Y F, Lin W M, et al. International Journal of Hydrogen Energy, 2020, 45(15), 8168. 91 Feng K, Zhong J, Zhao B H, et al. Angewandte Chemie-International Edition, 2016, 55(39), 11950. 92 Feng Y F, Zhang J, Ye H L, et al. Nanomaterials, 2019, 9(9), 1334. 93 Zhang N, Shao Q, Xiao X H, et al. Advanced Functional Materials, 2019, 29(13), 1808161. 94 Rakap M. Applied Catalysis A-General, 2014, 478, 15. 95 Rakap M. Journal of Power Sources, 2015, 276, 320. 96 Lu D, Yu G F, Li Y, et al. Journal of Alloys and Compounds, 2017, 694, 662. 97 Cao N, Su J, Luo W, et al. International Journal of Hydrogen Energy, 2014, 39(1), 426. 98 Yin L X, Zhang T T, Dai K Q, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(2), 822. 99 Li Y T, Zhang X L, Peng Z K, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8458. 100 Miao H, Ma K M, Zhu H R, et al. RSC Advances, 2019, 9(26), 14580-5. 101 Wang C Y, Sun D D, Yu X F, et al. Inorganic Chemistry Frontiers, 2018, 5(8), 2038. 102 Gao D D, Zhang Y H, Zhou L Q, et al. Applied Surface Science, 2018, 427, 114. 103 Guo K, Ding Y, Luo J, et al. ACS Applied Energy Materials, 2019, 2(8), 5851. 104 Yao Q L, Lu Z H, Wang Y Q, et al. The Journal of Physical Chemistry C, 2015, 119(25), 14167. 105 Yen H A, Seo Y, Kaliaguine S, et al. ACS Catalysis, 2015, 5(9), 5505. 106 Hsieh H H, Chang Y K, Pong W F, et al. Physical Review B, 1998, 57(24), 15204. 107 Wang C Y, Li L L, Yu X F, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8256. 108 Fu L L, Zhang D F, Yang Z, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3734. 109 Li Y, Li S F. International Journal of Hydrogen Energy, 2020, 45(17), 10433. 110 Wang Y, Zou K L, Wang D, et al. Renewable Energy, 2020, 154, 453. 111 Fernandes R, Patel N, Miotello A, et al. Topics in Catalysis, 2012, 55(14-15), 1032. 112 Fernandes R, Patel N, Miotello A, et al. International Journal of Hydrogen Energy, 2012, 37(3), 2397. 113 Hu H B, Long B, Jiang Y F, et al. Chemical Research in Chinese Universities, 2020, 36(6), 1209. 114 Dovgaliuk I, Safin D A, Tumanov N A, et al. ChemSusChem, 2017, 10(23), 4725. 115 Yousef A, Brooks R M, El-Halwany M M, et al. International Journal of Hydrogen Energy, 2016, 41(1), 285. 116 Patel N, Kale A, Miotello A. Applied Catalysis B-Environmental, 2012, 111, 178. 117 Zhong F Y, Wane Q, Xu G L, et al. Applied Surface Science, 2018, 455, 326. 118 Demirci U B. Energies, 2020, 13(12), 3071. 119 Satyapal S, Petrovic J, Read C, et al. Catalysis Today, 2007, 120(3-4), 246. 120 Wu H, Cheng Y J, Fan Y P, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30325. 121 Liu C H, Wu Y C, Chou C C, et al. International Journal of Hydrogen Energy, 2012, 37(3), 2950. 122 Zhu Q L, Xu Q. Energy & Environmental Science, 2015, 8(2), 478. 123 Ramachandran P V, Raju B C, Gagare P D. Organic Letters, 2012, 14(24), 6119. 124 Ramachandran P V, Gagare P D. Inorganic Chemistry, 2007, 46 (19), 7810.