Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21110116-12    https://doi.org/10.11896/cldb.21110116
  无机非金属及其复合材料 |
氨硼烷水解制氢催化剂的研究进展
韦秋红, 褚海亮*, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤
桂林电子科技大学材料科学与工程学院,广西电子信息材料构效关系重点实验室,广西 桂林 541004
Progress in Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane
WEI Qiuhong, CHU Hailiang*, XIA Yongpeng, QIU Shujun, WEN Xin, XU Fen, SUN Lixian
Guangxi Key Laboratory of Information Materials, School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, Guangxi, China
下载:  全 文 ( PDF ) ( 17835KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,氢能已成为全球公认的清洁能源之一,氢能的高效利用有利于缓解能源短缺和环境污染等问题。在适当的催化剂作用下可以实现氨硼烷(NH3BH3,AB)水解反应的可控放氢,其因具有反应条件温和、环境友好等特点而备受关注,选择高活性的催化剂是提高氨硼烷水解制氢效率的关键。本文介绍了氨硼烷的结构、性质及合成方法,综述了氨硼烷水解制氢催化剂的最新研究进展,介绍了催化剂的分类及特点,指出了该领域中面临的挑战和未来研发重点。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韦秋红
褚海亮
夏永鹏
邱树君
温鑫
徐芬
孙立贤
关键词:  氨硼烷  水解  制氢  催化剂    
Abstract: Hydrogen has been recognized as the green energy source and the use of hydrogen energy technologies has gained considerable attention from worldwide researchers and industries. The efficient utilization of hydrogen can be beneficial to the alleviation of global issues such as energy crisis and environment pollution. The catalyzed hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB) is a potential route to the controllable generation of hydrogen. This catalytic reaction also has the advantages of mild reaction conditions and environmental friendliness, which make it one of the research hotspots in the field of hydrogen energy. Catalyst is a crucial factor determining the hydrogen generation efficiency of ammonia borane. This review includes an introduction of the structure, properties and synthesis of ammonia borane, a comprehensive description of the recent progress in the research of relevant catalysts with high (or potentially high) activities, as well as a brief discussion on challenges and future development trends.
Key words:  ammonia borane    hydrolysis    dehydrogenation    catalysts
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TB34  
基金资助: 广西自然科学基金(2020GXNSFAA297047);中央引导地方科技发展资金项目(桂科ZY21195038);国家自然科学基金(52101245; 22179026; 21965007; 52161035; U20A20237);桂林电子科技大学研究生教育创新计划资助项目(2022YCXS195);广西新能源材料结构与性能协同创新中心;广西八桂学者项目
通讯作者:  *褚海亮,桂林电子科技大学材料科学与工程学院教师、博士研究生导师,广西杰出青年基金获得者,中国仪表功能材料学会储能与动力电池及其材料专业委员会委员和全国材料与器件网理事会理事。2008年毕业于中国科学院大连化学物理研究所,获理学博士学位,随后留所工作,2012年调入桂林电子科技大学材料科学与工程学院,2014年在加拿大魁北克大学氢能研究所作访问学者。长期从事新能源材料领域的研究,以研发高容量氢气制备/储存材料与电化学储能材料为主要研究方向。已发表100余篇SCI收录论文,授权中国发明专利10余项。chuhailiang@guet.edu.cn   
作者简介:  韦秋红,2020年6月于桂林电子科技大学获得工学学士学位。现为桂林电子科技大学材料科学与工程学院硕士研究生,在褚海亮研究员的指导下进行研究。目前主要研究领域为新能源材料。
引用本文:    
韦秋红, 褚海亮, 夏永鹏, 邱树君, 温鑫, 徐芬, 孙立贤. 氨硼烷水解制氢催化剂的研究进展[J]. 材料导报, 2023, 37(17): 21110116-12.
WEI Qiuhong, CHU Hailiang, XIA Yongpeng, QIU Shujun, WEN Xin, XU Fen, SUN Lixian. Progress in Catalysts for Hydrolytic Dehydrogenation of Ammonia Borane. Materials Reports, 2023, 37(17): 21110116-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110116  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21110116
1 Sartbaeva A, Kuznetsov V L, Wells S A, et al. Energy & Environmental Science, 2008, 1(1), 79.
2 Lai Q, Paskevicius M, Sheppard D A, et al. ChemSusChem, 2015, 8(17), 2789.
3 Yu X B, Tang Z W, Sun D L, et al. Progress in Materials Science, 2017, 88, 1.
4 Ouyang L, Jiang J, Chen K, et al. Nano-Micro Leterst, 2021, 13(1), 134.
5 Cao Z J, Ouyang L Z, Felderhoff M, et al. RSC Advances, 2020, 10(32), 19027.
6 Yao Q L, Ding Y Y, Lu Z H. Inorganic Chemistry Frontiers, 2020, 7(20), 3837.
7 Yao Q L, Du H X, Lu Z H. Progress in Chemistry, 2020, 32(12), 1930.
8 Sun H M, Meng J, Jiao L F, et al. Inorganic Chemistry Frontiers, 2018, 5(4), 760.
9 Klebanoff L E, Keller J O. International Journal of Hydrogen Energy, 2013, 38(11), 4533.
10 Hamad Y M, Hamad T A, Agll A A A, et al. International Journal of Hydrogen Energy, 2014, 39(19), 9943.
11 Koneczna R, Cader J. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 2021, 37(3), 53.
12 Wang P, Kang X D. Dalton Transactions, 2008, (40), 5400.
13 Akbayrak S, Ozkar S. International Journal of Hydrogen Energy, 2018, 43(40), 18592.
14 Greene D L, Ogden J M, Lin Z H. eTransportation, 2020, 6, 100086.
15 Wang K, Yao Q L, Qing S J, et al. Journal of Materials Chemistry A, 2019, 7(16), 9903.
16 Zhang Z J, Luo Y X, Liu S W, et al. Journal of Materials Chemistry A, 2019, 7(37), 21438.
17 Li X G, Zhang C L, Luo M H, et al. Inorganic Chemistry Frontiers, 2020, 7(5), 1298.
18 He T, Pachfule P, Wu H, et al. Nature Reviews Materials, 2016, 1(12), 16059.
19 Li Z, He T, Matsumura D, et al. ACS Catalysis, 2017, 7(10), 6762.
20 Deng J F, Chen S P, Wu X J, et al. Journal of Inorganic Materials, 2021, 36(1), 1.
21 Li Z, He T, Liu L, et al. Chemical Science, 2017, 8(1), 781.
22 Zhan W W, Zhu Q L, Xu Q. ACS Catalysis, 2016, 6(10), 6892.
23 Alpaydin C Y, Gulbay S K, Colpan C O. International Journal of Hydrogen Energy, 2020, 45(5), 3414.
24 Shore S G, Parry R W. Journal of the American Chemical Society, 1955, 77(22), 6084.
25 Lippert E L, Lipscomb W N. Journal of the American Chemical Society, 1956, (2), 503.
26 Liu Z Q, Marder T B. Angewandte Chemie-International Edition, 2008, 47(2), 242.
27 Stephens F H, Pons V, Tom Baker R T. Dalton Transactions, 2007, (25), 2613.
28 Cya A, Skga B, Coca C. International Journal of Hydrogen Energy, 2020, 45(5), 3414.
29 Shrestha R P, Diyabalanage H V K, Semelsberger T A, et al. International Journal of Hydrogen Energy, 2009, 34(6), 2616.
30 Sit V, Geanangel R A, Wendlandt W W. Thermochimica Acta, 1987, 113(87), 379.
31 Caliskan S, Zahmakiran M, Ozkar S. Applied Catalysis B-Environmental, 2010, 93(3-4), 387.
32 Ramachandran P V, Gagare P D. Inorganic Chemistry, 2007, 46(19), 7810.
33 Yao Q L, Huang M, Lu Z H, et al. Dalton Transactions, 2015, 44(3), 1070.
34 Yamada Y, Yano K, Xu Q A, et al. The Journal of Physical Chemistry C, 2010, 114(39), 16456.
35 Xu Q, Chandra M. Journal of Power Sources, 2006, 163(1), 364.
36 Aijaz A, Karkamkar A, Choi Y J, et al. Journal of the American Chemical Society, 2012, 134(34), 13926.
37 Chen W Y, Ji J, Duan X Z, et al. Chemical Communications, 2014, 50(17), 2142.
38 Akbayrak S, Gencturk S, Morkan I, et al. RSC Advances, 2014, 4(26), 13742.
39 Karahan S, Zahmakiran M, Ozkar S. Chemical Communications, 2012, 48(8), 1180.
40 Tonbul Y, Akbayrak S, Ozkar S. Journal of Colloid and Interface Science, 2019, 553, 581.
41 Yang X C, Sun J K, Kitta M, et al. Nature Catalysis, 2018, 1(3), 214.
42 Li W H, Nie X W, Jiang X, et al. Applied Catalysis B-Environmental, 2018, 220, 397.
43 Wan H J, Wu B S, Xiang H W, et al. ACS Catalysis, 2012, 2(9), 1877.
44 Zhong W D, Tian X K, Yang C, et al. International Journal of Hydrogen Energy, 2016, 41(34), 15225.
45 Zhang M, Liu L, He T, et al. Chemistry-an Asian Journal, 2017, 12(4), 470.
46 Zhu Q L, Li J, Xu Q. Journal of the American Chemical Society, 2013, 135(28), 10210.
47 Zhu B J, Zou R Q, Xu Q. Advanced Energy Materials, 2018, 8(24), 1801193.
48 Perry IV J J, Perman J A, Zaworotko M J. Chemical Society Reviews, 2009, 38(5), 1400.
49 Chandra M, Xu Q. Journal of Power Sources, 2007, 168(1), 135.
50 Yan H, Lin Y, Wu H, et al. Nature Communications, 2017, 8(1), 1070.
51 Li J J, Guan Q Q, Wu H, et al. Journal of the American Chemical Society, 2019, 141(37), 14515.
52 Yang K Z, Zhou L Q, Yu G F, et al. International Journal of Hydrogen Energy, 2016, 41(15), 6300.
53 Cui B Y, Wu G M, Qiu S J, et al. Advanced Sustainable Systems, 2021, 5(10), 2100209.
54 Sun Q M, Wang N, Bai R S, et al. Advances Science, 2019, 6(10), 1802350.
55 Wang H, Xu C L, Chen Q, et al. ACS Sustainable Chemistry & Engineering, 2019, 7(1), 1178.
56 Yao Q L, Shi W M, Feng G, et al. Journal of Power Sources, 2014, 257, 293.
57 Du C, Ao Q, Cao N, et al. International Journal of Hydrogen Energy, 2015, 40(18), 6180.
58 Fan Y R, Li X J, He X C, et al. International Journal of Hydrogen Energy, 2014, 39(35), 19982.
59 Yao Q L, Lu Z H, Yang K K, et al. Scientific Reports, 2015, 5, 15186.
60 Chu H L, Li N P, Qiu X Y, et al. International Journal of Hydrogen Energy, 2019, 44(55), 29255.
61 Liu Y, Yong X, Liu Z Y, et al. Advanced Sustainable Systems, 2019, 3(5), 1800161.
62 Lu R, Xu C L, Wang Q, et al. International Journal of Hydrogen Energy, 2018, 43(39), 18253.
63 Akbayrak S, Ozkar S. ACS Applied Materials Interfaces, 2012, 4(11), 6302.
64 Liu J X, Li P Y, Jiang R F, et al. ChemCatChem, 2021, 13(19), 4142.
65 Chu H L, Li N P, Qiu S J, et al. International Journal of Hydrogen Energy, 2019, 44(3), 1774.
66 Metin O, Ozkar S. Energy & Fuels, 2009, 23(7), 3517.
67 Fang Y, Xiao Z F, Li J L, et al. Angewandte Chemie-Internation Edition, 2018, 57(19), 5283.
68 Wang C L, Tuninetti J, Wang Z, et al. Journal of the American Chemical Society, 2017, 139(33), 11610.
69 Liu P L, Gu X J, Kang K, et al. ACS Applied Materials & Interfaces, 2017, 9(12), 10759.
70 Zhou L M, Meng J, Li P, et al. Materials Horizons, 2017, 4(2), 268.
71 Yang Y W, Feng G, Lu Z H, et al. Acta Physico-Chimica Sinica, 2014, 30(6), 1180.
72 Hu J T, Chen Z X, Li M X, et al. ACS Applied Materials & Interfaces, 2014, 6(15), 13191.
73 Metin O, Ozkar S, Sun S H. Nano Research, 2010, 3(9), 676.
74 Li P Z, Aijaz A, Xu Q. Angewandte Chemie-International Edition, 2012, 51(27), 6753.
75 Zhang J K, Chen C Q, Yan W J, et al. Catalysis Science & Technology, 2016, 6(7), 2112.
76 Yao Q L, Lu Z H, Yang Y W, et al. Nano Research, 2018, 11(8), 4412.
77 Metin O, Mazumder V, Ozkar S, et al. Journal of the American Chemical Society, 2010, 132(5), 1468.
78 Slot T K, Yue F, Xu H L, et al. 2D Materials, 2021, 8(1), 015001.
79 Ge Y Z, Qin X T, Li A W, et al. Journal of the American Chemical Society, 2021, 143(2), 628.
80 Zhang X, Zhao Y F, Jia X D, et al. Advanced Energy Materials, 2018, 8(12), 1702780.
81 Liu P, Rodriguez J A. Journal of the American Chemical Society, 2005, 127(42), 14871.
82 Peng C Y, Kang L, Cao S, et al. Angewandte Chemie-International Edition, 2015, 54(52), 15725.
83 Fu Z C, Xu Y, Chan S L F, et al. Chemical Communications, 2017, 53(4), 705.
84 Ma X C, He Y Y, Zhang D X, et al. ChemistrySelect, 2020, 5(7), 2190.
85 Hou C C, Li Q, Wang C J, et al. Energy & Environmental Science, 2017, 10(8), 1770.
86 Zhou X, Meng X F, Wang J M, et al. International Journal of Hydrogen Energy, 2019, 44(10), 4764.
87 Hou C C, Chen Q Q, Li K, et al. Journal of Materials Chemistry A, 2019, 7(14), 8277.
88 Wei L, Yang Y M, Yu Y N, et al. International Journal of Hydrogen Energy, 2021, 46(5), 3811.
89 Qu B, Tao Y, Yang L, et al. International Journal of Hydrogen Energy, 2021, 46(61), 31324.
90 Liao J Y, Feng Y F, Lin W M, et al. International Journal of Hydrogen Energy, 2020, 45(15), 8168.
91 Feng K, Zhong J, Zhao B H, et al. Angewandte Chemie-International Edition, 2016, 55(39), 11950.
92 Feng Y F, Zhang J, Ye H L, et al. Nanomaterials, 2019, 9(9), 1334.
93 Zhang N, Shao Q, Xiao X H, et al. Advanced Functional Materials, 2019, 29(13), 1808161.
94 Rakap M. Applied Catalysis A-General, 2014, 478, 15.
95 Rakap M. Journal of Power Sources, 2015, 276, 320.
96 Lu D, Yu G F, Li Y, et al. Journal of Alloys and Compounds, 2017, 694, 662.
97 Cao N, Su J, Luo W, et al. International Journal of Hydrogen Energy, 2014, 39(1), 426.
98 Yin L X, Zhang T T, Dai K Q, et al. ACS Sustainable Chemistry & Engineering, 2021, 9(2), 822.
99 Li Y T, Zhang X L, Peng Z K, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8458.
100 Miao H, Ma K M, Zhu H R, et al. RSC Advances, 2019, 9(26), 14580-5.
101 Wang C Y, Sun D D, Yu X F, et al. Inorganic Chemistry Frontiers, 2018, 5(8), 2038.
102 Gao D D, Zhang Y H, Zhou L Q, et al. Applied Surface Science, 2018, 427, 114.
103 Guo K, Ding Y, Luo J, et al. ACS Applied Energy Materials, 2019, 2(8), 5851.
104 Yao Q L, Lu Z H, Wang Y Q, et al. The Journal of Physical Chemistry C, 2015, 119(25), 14167.
105 Yen H A, Seo Y, Kaliaguine S, et al. ACS Catalysis, 2015, 5(9), 5505.
106 Hsieh H H, Chang Y K, Pong W F, et al. Physical Review B, 1998, 57(24), 15204.
107 Wang C Y, Li L L, Yu X F, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(22), 8256.
108 Fu L L, Zhang D F, Yang Z, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3734.
109 Li Y, Li S F. International Journal of Hydrogen Energy, 2020, 45(17), 10433.
110 Wang Y, Zou K L, Wang D, et al. Renewable Energy, 2020, 154, 453.
111 Fernandes R, Patel N, Miotello A, et al. Topics in Catalysis, 2012, 55(14-15), 1032.
112 Fernandes R, Patel N, Miotello A, et al. International Journal of Hydrogen Energy, 2012, 37(3), 2397.
113 Hu H B, Long B, Jiang Y F, et al. Chemical Research in Chinese Universities, 2020, 36(6), 1209.
114 Dovgaliuk I, Safin D A, Tumanov N A, et al. ChemSusChem, 2017, 10(23), 4725.
115 Yousef A, Brooks R M, El-Halwany M M, et al. International Journal of Hydrogen Energy, 2016, 41(1), 285.
116 Patel N, Kale A, Miotello A. Applied Catalysis B-Environmental, 2012, 111, 178.
117 Zhong F Y, Wane Q, Xu G L, et al. Applied Surface Science, 2018, 455, 326.
118 Demirci U B. Energies, 2020, 13(12), 3071.
119 Satyapal S, Petrovic J, Read C, et al. Catalysis Today, 2007, 120(3-4), 246.
120 Wu H, Cheng Y J, Fan Y P, et al. International Journal of Hydrogen Energy, 2020, 45(55), 30325.
121 Liu C H, Wu Y C, Chou C C, et al. International Journal of Hydrogen Energy, 2012, 37(3), 2950.
122 Zhu Q L, Xu Q. Energy & Environmental Science, 2015, 8(2), 478.
123 Ramachandran P V, Raju B C, Gagare P D. Organic Letters, 2012, 14(24), 6119.
124 Ramachandran P V, Gagare P D. Inorganic Chemistry, 2007, 46 (19), 7810.
[1] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[2] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[5] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[6] 汪尔文, 张兵, 李欣明, 江园, 吴永红, 王同华. 催化炭膜制备及其强化甲醇水蒸气重整制氢反应[J]. 材料导报, 2023, 37(17): 22010107-5.
[7] 林路贺, 邹爱华, 康志兵, 郭浩, 汪杰. Co-Ni-Mo三元纳米材料的合成及催化氨硼烷制氢的研究[J]. 材料导报, 2023, 37(16): 21120005-6.
[8] 杨芷奇, 孙立, 宋伟明, 赵冰, 叶军, 陈朝晖, 赵桦萍, 王福洋. NiFe-P/石墨烯双功能催化剂的有效构建及全解水性能研究[J]. 材料导报, 2023, 37(13): 21120112-9.
[9] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[10] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[11] 阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
[12] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[13] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[14] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[15] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed