Please wait a minute...
材料导报  2023, Vol. 37 Issue (15): 21110097-8    https://doi.org/10.11896/cldb.21110097
  无机非金属及其复合材料 |
基于分子动力学的废食用油改性沥青自愈合特性研究
徐宁,汪海年*, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞
长安大学公路学院,西安 710064
Research on the Self-healing Properties of Waste Edible Oil Modified Asphalt Based on Molecular Dynamics Method
XU Ning, WANG Hainian*, CHEN Yu, DING Heyang, FENG Ponan, ZHAO Yunfei
School of Highway, Chang'an University, Xi'an 710064, China
下载:  全 文 ( PDF ) ( 22492KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了揭示废食用油对沥青自愈合性能的影响机理,采用分子动力学方法研究了废食用油改性沥青的自愈合特性。构建了基质沥青和废食用油改性沥青模型,并通过能量、径向分布函数(RDF)、密度和溶解度参数对模型的合理性进行了验证。进一步,对含15 Å微裂缝的基质沥青和废食用油改性沥青自愈合模型进行了动力学计算,对比分析了两种沥青自愈合过程中的结构相态,分子相对浓度以及晶胞参数和能量的变化。同时,对沥青及其各组分分子的运动特性进行了统计分析。结果表明,自愈合过程中,范德华力驱动沥青分子的扩散,同时,沥青分子受到拉伸作用逐渐填补微裂缝;随着温度升高,基质沥青和废食用油改性沥青中的微裂缝均可以更快地被修复。但超过318 K 后,温度对沥青自愈合的促进作用不再明显。与基质沥青相比,废食用油改性沥青中的微裂缝较先消失,具有更好的自愈合效率;加入废食用油后,沥青中沥青质聚集体减小,其他组分分子有足够的扩散通道,同时,单一链状结构废食用油分子也具有较强的扩散能力,因此废食用油改性沥青的扩散能力整体强于基质沥青,也表现出更好的自愈合性能。研究成果有助于深入理解废食用油改性沥青的自愈合特性,研究方法也可以为类似研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐宁
汪海年
陈玉
丁鹤洋
冯珀楠
赵云飞
关键词:  沥青结合料  废食用油  分子动力学  自愈合  扩散能力    
Abstract: To reveal the influence mechanism of waste edible oil on the self-healing properties of asphalt, the self-healing properties of waste edible oil modified asphalt were studied by molecular dynamics method. The models of base asphalt and waste edible oil modified asphalt were constructed. The rationality of the models was verified by energy, radial distribution function (RDF), density and solubility parameters. Then the dynamics calculated were applied to both the self-healing models containing 15 Å microcrack of base asphalt and waste edible oil modified asphalt. The changes of configuration, relative concentration of the asphalt molecule, cell parameters and energy in the self-healing process for the two models were compared and analyzed. At the same time, the molecule diffusion ability of asphalt and its components were statistically analyzed. The results show that the van der Waals force drives the diffusion of asphalt molecules in the process of self-healing. At the same time, asphalt molecules are subjected to molecular tension to gradually fill the microcracks;with the increase of temperature, the microcracks of base asphalt and waste edible oil modified asphalt can be repaired faster. However, when the temperature exceeds 318 K, the promoting effect is not obvious. Compared with base asphalt, the microcrack in the self-healing model of waste edible oil modified asphalt disappear earlier, showing better self-healing efficiency. When waste edible oil is added, the asphaltene aggregate in asphalt decreases, leaving diffusion channels for other component molecules. At the same time, waste edible oil molecules with single chain structure also have a strong diffusion ability, so the overall diffusion ability of waste edible oil modified asphalt is stronger than that of base asphalt. Thus the waste edible oil modified asphalt shows better self-healing performance. The findings are helpful to deeply understand the self-healing characteristics of waste edible oil modified asphalt, and the research methods can also provide a reference for similar research.
Key words:  asphalt binder    waste edible oil    molecular dynamics    self-healing    diffusion ability
出版日期:  2023-08-10      发布日期:  2023-08-07
ZTFLH:  U414  
基金资助: 国家自然科学基金(51878063;52078048;52008029)
通讯作者:  * 汪海年,现为长安大学公路学院党委书记,教授,博士研究生导师。2007年毕业于长安大学,获得工学博士学位。2010—2011年在密歇根理工大学作访问学者。研究方向包括:特殊区域道路工程设计理论与方法、道路材料细观表征与建模、环保铺面材料研发与评价等,发表论文130余篇,其中SCI检索60余篇。wanghn@chd.edu.cn   
作者简介:  徐宁,2016年毕业于长江大学,获得工学学士学位。2019年毕业于长安大学,获得工学硕士学位。现为长安大学博士研究生,指导教师为汪海年教授。主要研究方向为再生沥青及混合料宏微观特性表征与数值模拟。
引用本文:    
徐宁,汪海年, 陈玉, 丁鹤洋, 冯珀楠, 赵云飞. 基于分子动力学的废食用油改性沥青自愈合特性研究[J]. 材料导报, 2023, 37(15): 21110097-8.
XU Ning, WANG Hainian, CHEN Yu, DING Heyang, FENG Ponan, ZHAO Yunfei. Research on the Self-healing Properties of Waste Edible Oil Modified Asphalt Based on Molecular Dynamics Method. Materials Reports, 2023, 37(15): 21110097-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21110097  或          http://www.mater-rep.com/CN/Y2023/V37/I15/21110097
1 Zhang W Q. Petroleum Processing Petrochemical Technology, 2020, 51(5), 87(in Chinese).
张伟清. 石油炼制与化工, 2020, 51(5), 87.
2 Sun Z, Yi J, Huang Y, et al. Construction and Building Materials, 2016, 102, 496.
3 Ji J, Yao H, Suo Z, et al. Journal of Materials in Civil Engineering, 2017, 29(3), D4016003.
4 Zeng F, Li S Q. Petroleum asphalt, 2020, 34 (1), 21(in Chinese).
曾飞, 李诗琦. 石油沥青, 2020, 34(1), 21.
5 Zargar M, Ahmadinia E, Asli H, et al. Journal of Hazardous Materials, 2012, 233, 254.
6 Wang C, Xue L, Xie W, et al. Construction and Building Materials, 2018, 167, 348.
7 Chen M, Leng B, Wu S, et al. Construction and Building materials, 2014, 66, 286.
8 Al-Omari A A, Khedaywi T S, Khasawneh M A. International Journal of Pavement Research and Technology, 2018, 11(1), 68.
9 Maharaj R, Harry V, Mohamed N. Progress in Rubber Plastics and Recycling Technology, 2015, 31(4), 265.
10 Li H, Dong B, Wang W, et al. Applied Sciences, 2019, 9(9), 1767.
11 Wan G, Chen M, Wu S, et al. In:Advances in Energy and Environmental Materials: Proceedings of Chinese Materials Conference 2017 18th. Springer Singapore, 2018, pp.591.
12 Hou Y, Dong Y S, Li Z, et al. Journal of Chongqing Jiaotong University, Natural Science Edition, 2021, 40(8), 120(in Chinese).
侯芸, 董元帅, 李志豪, 等. 重庆交通大学学报:自然科学版, 2021, 40(8), 120.
13 Hue W L, Nyam K L. International Food Research Journal, 2018, 25(4), 1502.
14 Al-Mansoori T, Micaelo R, Artamendi I, et al. Construction and Building Materials, 2017, 155, 1091.
15 Wang Y D, Liu Z M, Hao P W. Materials Reports, 2019, 33 (9), 1517.
王泳丹, 刘子铭, 郝培文. 材料导报, 2019, 33(9), 1517.
16 Zhang X, Ning Y, Zhou X, et al. Journal of Cleaner Production, 2021, 317, 128375.
17 Gong Y, Xu J, Yan E, et al. Frontiers in Materials, 2021, 7, 599551.
18 Ding H, Wang H, Qu X, et al. Journal of Cleaner Production, 2021, 299, 126927.
19 Li D D, Greenfield M L. Fuel, 2014, 115, 347.
20 Sonibare K, Rucker G, Zhang L. Construction and Building Materials, 2021, 270, 121687.
21 Asli H, Ahmadinia E, Zargar M, et al. Construction and Building Materials, 2012, 37, 398.
22 Leung D Y C, Guo Y. Fuel Processing Technology, 2006, 87(10), 883.
23 Ding Y, Tang B, Zhang Y, et al. Journal of Materials in Civil Enginee-ring, 2015, 27(8), C4014004.
24 Guo F, Zhang J, Pei J, et al. Construction and Building Materials, 2020, 252, 118956.
25 Sun W, Wang H. Applied Surface Science, 2020, 510, 145435.
26 Long Z, You L, Tang X, et al. Construction and Building Materials, 2020, 255, 119354.
27 Menozzi A, Garcia A, Partl M N, et al. Construction and Building Materials, 2015, 74, 162.
28 Yang X, Dai Q, You Z, et al. Journal of Materials in Civil Engineering, 2015, 27(9), 04014259.
29 Sun D, Lin T, Zhu X, et al. Computational Materials Science, 2016, 114, 86.
30 Tian Y, Zheng M, Liu Y, et al. Construction and Building Materials, 2021, 305, 124791.
[1] 龚鹏, 程小伟, 武治强, 张高寅, 张春梅. 碳酸钙晶须对CO2诱导固井水泥石裂缝自愈合的影响研究[J]. 材料导报, 2023, 37(7): 21100107-7.
[2] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[3] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[4] 栗启, 胡魁, 俞才华, 张桃利, 王丹丹. 聚乙烯与沥青相互作用的分子动力学机理研究[J]. 材料导报, 2023, 37(5): 21080176-6.
[5] 丁鹤洋, 汪海年, 徐宁, 王宠惠, 屈鑫, 尤占平. 基于分子动力学的生物质油改性沥青相容性研究[J]. 材料导报, 2023, 37(2): 21050266-8.
[6] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[7] 许梦媛, 刘让同, 李亮, 刘淑萍, 李淑静. 氯化铝交联双网络聚乙烯醇/角蛋白自愈合水凝胶[J]. 材料导报, 2023, 37(15): 22010257-6.
[8] 严亮, 王沛, 黄国辉, 李慧敏, 蒋坤. 基于动态非共价键作用的HP(AA-co-AM)自愈合凝胶的构建及传感性能研究[J]. 材料导报, 2023, 37(14): 22010002-6.
[9] 王勇, 张微微, 李永存, 张旭昀, 孙丽丽. 第一性原理计算在电化学腐蚀中的应用研究进展[J]. 材料导报, 2023, 37(12): 21110046-11.
[10] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[11] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[12] 郑棋文, 范同祥. 液/固晶面润湿性实验与模拟研究方法[J]. 材料导报, 2022, 36(9): 21010025-12.
[13] 黄金鑫, 吴承伟, 余小刚, 马建立, 张伟. 基于多巴胺的自愈水凝胶研究进展[J]. 材料导报, 2022, 36(8): 20070335-7.
[14] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[15] 田继挺, 冯琦杰, 郑健, 周韦, 李欣, 梁晓波, 刘德峰. 单晶立方碳化硅辐照肿胀与非晶化的分子动力学模拟研究[J]. 材料导报, 2022, 36(2): 20100248-5.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed