Abstract: Nano-oxide dispersion strengthened (ODS) steel has excellent high temperature mechanical properties and radiation resistance, due to the strengthening effects of ultra-high number density of nano-oxide particles dispersed in the matrix. It has been generally used as a candidate structural material for cladding of fourth-generation fission reactors and future fusion reactors. The main manufacture process of ODS steel is advanced powder metallurgy technology, such as mechanical alloying (MA). Due to the limitations of mechanical alloying in engineering applications, the liquid metal (LM) route has been proposed to prepare ODS steel. Recently, the vacuum melting method is the most commonly used liquid metal route, and gives many interesting results. However, there are still many drawbacks compared with mechanical alloying, especially the tailoring of the oxide distribution. The current paper mainly discusses the precipitation mechanism and growth behavior of oxide particles, and the effects of the alloying elements on the nano-oxides in ODS steel prepared by mechanical alloying. An overview of the process of liquid metal route and the recent results of vacuum smelting method is also mentioned in the paper. Topics that need to be addressed in the future mechanical alloying investigation, and the further development and process optimization of the liquid metal route are prospected, which is expected to provide as a reference for the subsequent research work of the liquid metal route.
张孟超, 李慧. ODS钢中纳米氧化物析出长大机制的研究进展[J]. 材料导报, 2023, 37(18): 21100060-7.
ZHANG Mengchao, LI Hui. Recent Progress on the Precipitation and Growth Mechanism of Nano-oxides in ODS Steels. Materials Reports, 2023, 37(18): 21100060-7.
1 Xu S, Chen L Z, Cao S G, et al. Materials Reports, 2019, 33(1), 78 (in Chinese). 徐帅, 陈灵芝, 曹书光, 等. 材料导报, 2019, 33(1), 78. 2 Huang Q Y, Li C J, Liu S J, et al. Chinese Journal of Nuclear Science and Engineering, 2009, 29(3), 260 (in Chinese). 黄群英, 李春京, 刘少军, 等. 核科学与工程, 2009, 29(3), 260. 3 Lyu Z. Atomic Energy Science and Technology, 2011, 45(9), 1105 (in Chinese). 吕铮. 原子能科学技术, 2011, 45(9), 1105. 4 Lyu Z, Liu C M. Journal of Materials and Metallurgy, 2012, 11(1), 51 (in Chinese). 吕铮, 刘春明.材料与冶金学报, 2012, 11(1), 51. 5 Yang F, Zhang Y, Jin S X, et al. Fujian Chemical Industry, 2014 (3), 1 (in Chinese). 杨峰, 张颖, 靳硕学, 等. 化学工程与装备, 2014 (3), 1. 6 Lyu Z, Liu C M. Journal of Materials and Metallurgy, 2011, 10(3), 203. (in Chinese). 吕铮, 刘春明.材料与冶金学报, 2011, 10(3), 203. 7 He J C, Wan F R. Journal of Functional Materials, 2014, 17(45), 17029 (in Chinese). 贺健超, 万发荣.功能材料, 2014, 17(45), 17029. 8 Chen Y X, Chen D X, Zhang J W. Materials Science and Technology, 2019, 27 (3), 29 (in Chinese). 陈禹锡, 陈东旭, 张峻巍.材料科学与工艺. 2019, 27 (3), 29. 9 Oksiuta Z, Lewandowska M, Unifantowicz P, et al. Fusion Engineering & Design, 2011, 86(9-11), 2417. 10 Mao X D, Oh K H, Jang J. Materials Characterization, 2016, 117, 91. 11 He P, Zhou Z J, Li M, et al. Journal of Iron and Steel Research, 2009, 21(11), 5 (in Chinese). 何培, 周张健, 李明, 等. 钢铁研究学报, 2009, 21(11), 5. 12 Xie R, Lyu Z, Shi Y N, et al. Transactions of Materials and Heat Treatment, 2018, 38(9), 58 (in Chinese). 谢锐, 吕铮, 石英男, 等. 材料热处理学报, 2018, 38(9), 58. 13 Rieken J R, Anderson I E, Kramer M J, et al. Journal of Nuclear Mate-rials, 2012, 428(1-3), 65. 14 Xie R, Lyu Z, Lu C Y, et al. Materials Reports, 2020, 34(8), 8141 (in Chinese). 谢锐, 吕铮, 卢晨阳, 等. 材料导报, 2020, 34(8), 8141. 15 Xie R, Lyu Z, Liu C M, et al. Transactions of Materials and Heat Treatment, 2019, 40(9), 121 (in Chinese). 谢锐, 吕铮, 刘春明, 等. 材料热处理学报, 2019, 40(9), 121. 16 Xie R, Lyu Z, Wang Q, et al. New Technology & New Process, 2019 (3), 7 (in Chinese). 谢锐, 吕铮, 王晴, 等. 新技术新工艺, 2019 (3), 7. 17 Pasebani S, Charit I. Journal of Alloys & Compounds, 2014, 599, 206. 18 Xie R, Lyu Z, Shi Y N, et al. Transactions of Materials and Heat Treatment, 2018, 39(9), 65 (in Chinese). 谢锐, 吕铮, 石英男, 等.材料热处理学报, 2018, 39(9), 65. 19 Zhang X X, Hong Z Y, Yan Q Z, et al. Transactions of Materials and Heat Treatment, 2019, 40(11), 69 (in Chinese). 张晓新, 洪志远, 燕青芝, 等. 材料热处理学报, 2019, 40(11), 69. 20 Shi Z M, Han F. Materials Research Innovations, 2015, 66, 304. 21 Shi Z M, Han F. Materials and Design, 2014, 66, 304. 22 Sarma M, Grants I, Kaldre I, et al. LOP Conference, 2017, 228, 12020. 23 Verhiest K, Mullens S, Graeve I D, et al. Ceramics International, 2014, 40(9), 14319. 24 Jian F G, Yan Q Z, Zhang X X, et al. Journal of Materials Research and Technology, 2019, 8(5), 3859. 25 Hong Z Y, Zhang X X, Yan Q Z, et al. Journal of Alloys and Compounds, 2019, 770, 831. 26 Yan Q, Hong Z. U.S. patent application, US20190144962A1, 2019. 27 Li M, Zhou Z J, Liao L, et al. Materials Reports, 2010, 24(15), 94 (in Chinese). 李明, 周张健, 廖璐, 等. 材料导报. 2010, 24(15), 94. 28 Zhang L, Ukai S, Hoshino T, et al. Acta Materialia, 2009, 57(12), 3671. 29 Swa B, Jing L A, Wl C, et al. Journal of Alloys and Compounds, 2020, 814, 152282. 30 Yan P Y, Yu L M, Liu Y C, et al. Journal of Alloys and Compounds, 2018, 739, 368. 31 Saber M, Xu W Z, Li L L, et al. Journal of Nuclear Materials, 2014, 452(1-3), 223. 32 Li Y F, Shen J J, Li F, et al. Materials Science & Engineering A, 2016, 654, 203. 33 Fu C L, Maja Krčmar, Painter G S, et al. Physical Review Letters, 2007, 99(22), 225502. 34 Wang M, Zhou Z J, Yan Z G, et al. Acta Metallurgica Sinica, 2013(2), 153(in Chinese). 王曼, 周张健, 闫志刚, 等.金属学报, 2013(2), 153. 35 He P, Zhou Z J, Li M, et al. Journal of Materials Engineering, 2010(9), 20 (in Chinese). 何培, 周张健, 李明, 等. 材料工程, 2010(9), 20. 36 Okuda T, Fujiwara M. Journal of Materials Science Letters, 1995, 14(22), 1600. 37 Kimura Y, Takaki S, Suejima S, et al. ISIJ International, 1999, 39(2), 176. 38 Lyu Z, Hu P H, Zhang G Y, et al. Journal of Materials and Metallurgy, 2015, 14(1), 67(in Chinese). 吕铮, 胡彭浩, 张国玉, 等.材料与冶金学报, 2015, 14(1), 67. 39 Xie R, Lyu Z, Lu C Y, et al. Transactions of Materials and Heat Treatment, 2014, 35(6), 127 (in Chinese). 谢锐, 吕铮, 卢晨阳, 等.材料热处理学报, 2014, 35(6), 127. 40 Xie R, Lyu Z, Lu C Y, et al. Acta Metallurgica Sinica, 2016, 52(9), 1053(in Chinese). 谢锐, 吕铮, 卢晨阳, 等.金属学报, 2016, 52(9), 1053. 41 Hsiung L L, Fluss M J, Tumey S J, et al. Physical Review, 2010, 82(18), 184103. 42 Dai L, Liu Y C, Dong Z Z. Powder Technology, 2012, 217, 281. 43 Sakasegawa H, Legendre F, Boulanger L, et al. Journal of Nuclear Materials, 2011, 417(1-3), 229. 44 Sawoong K, Ohtsuka S, Kaito T, et al. Journal of Nuclear Materials, 2011, 417, 209. 45 Schaffer G B, Loretto M H, Smallman R E, et al. Acta Metallurgica, 1989, 37(9), 2551. 46 Williams C A, Unifantowicz P, Baluc N, et al. Acta Materialia, 2013, 61(6), 2219. 47 Oksiutaa Z, Lewandowska M, Unifantowicz P, et al. Fusion Engineering and Design, 2011, 86(9-11), 2417. 48 Kim I S, Choi B Y, Kang C Y, et al. ISIJ International, 2003, 43(10), 1640. 49 Xie R, Lyu Z, Xu C W, et al. Materials Reports, 2020, 34(22), 22111(in Chinese). 谢锐, 吕铮, 徐长伟, 等. 材料导报, 2020, 34(22), 22111. 50 Auger M A,Castro V D, Leguey T, et al. Journal of Nuclear Materials, 2014, 445(1-3), 600. 51 Liu C X, Li H J, Dong H Q, et al. Journal of Alloys & Compounds, 2017, 702, 538. 52 Kim T K, Han C H, Kang S H, et al. Current Nanoscience, 2014, 10(1), 94. 53 Xu S, Zhou Z J, Jia H D. Atomic Energy Science and Technology, 2019, 53(10), 1885(in Chinese). 徐帅, 周张健, 贾皓东.原子能科学技术, 2019, 53(10), 1885. 54 Sakasegawa H, Chaffron L, Legendre F, et al. Journal of Nuclear Mate-rials, 2009, 386, 511. 55 Xu H J, Lyu Z, Gao H, et al. Transactions of Materials and Heat Treatment, 2015, 36(10), 124. (in Chinese). 徐海健, 吕铮, 高昊, 等. 材料热处理学报, 2015, 36(10), 124. 56 Eiselt C C, Klimenkov M, Lindau R, et al. Journal of Nuclear Materials, 2011, 416(1), 30. 57 Chen L Z, Li S F, Liao L, et al. Transactions of Materials and Heat Treatment, 2019, 40(11), 124(in Chinese). 陈灵芝, 李少夫, 廖璐, 等. 材料热处理学报, 2019, 40(11), 124. 58 Lee, Hoon J. Applied Mechanics & Materials, 2011, 87, 243. 59 Ribis J, Carlan Y D. Acta Materialia, 2012, 60(1), 238. 60 Klimiankou M, Lindau R, Möslang A. Journal of Crystal Growth, 2003, 249(1), 381. 61 Li M, Zhou Z J, Liu X T, et al. In: Chinese Nuclear Society. Beijing, 2009, pp. 2050 (in Chinese). 李明, 周张健, 刘晓彤, 等. 中国核学会学术年会. 北京, 2009, pp. 2050. 62 Yamashita S, Ohtsuka H, Akasaka N, et al. Philosophical Magazine Letters, 2004, 84(8) 525. 63 Klimenkov M, Lindau R, Möslang A. Journal of Nuclear Materials, 2009, 386, 553. 64 Marquis E A. Applied Physics Letters, 2008, 93(18), 181904. 65 Verhiest K, Mullens S, Graeve I D. Ceramics International, 2014, 40(9), 14319. 66 Mohammad A M, Nili-Ahmadabadi M, Forghani F, et al. Scientific Reports, 2016, 6(1), 38621.