Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 21100060-7    https://doi.org/10.11896/cldb.21100060
  金属与金属基复合材料 |
ODS钢中纳米氧化物析出长大机制的研究进展
张孟超, 李慧*
上海大学微结构重点实验室,上海 200444
Recent Progress on the Precipitation and Growth Mechanism of Nano-oxides in ODS Steels
ZHANG Mengchao, LI Hui*
Key Laboratory of Microstructure, Shanghai University, Shanghai 200444, China
下载:  全 文 ( PDF ) ( 6049KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米氧化物弥散强化(Oxide dispersion strengthened,ODS)钢得益于基体中弥散分布的超高数量密度的纳米氧化物粒子,具有优异的综合服役性能,被视为第四代裂变堆包壳以及未来聚变堆包层的优选结构材料。传统制备ODS钢最主要的方法是机械合金化(Mechanical alloying,MA)等先进粉末冶金技术,且对其制备样品中氧化物粒子性质的研究较为深入。由于机械合金化在工程应用上有一定局限性,近年来提出以液态金属(Liquid metal,LM)路线制备ODS钢。目前液态金属路线中的真空熔炼法是最常用也是相对比较成功的方法,但与机械合金化相比仍有一定的差距。本文主要总结了机械合金化制备的ODS钢中纳米氧化物的析出机制、长大行为以及其他元素的添加对其产生的影响等,同时对液态金属路线的工艺进程及真空熔炼法的研究现状进行概述,并对机械合金化未来所需解决的问题和液态金属路线的后续发展、工艺优化等进行了展望,为液态金属路线的后续研究工作提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张孟超
李慧
关键词:  ODS钢  纳米氧化物  析出机制  合金元素    
Abstract: Nano-oxide dispersion strengthened (ODS) steel has excellent high temperature mechanical properties and radiation resistance, due to the strengthening effects of ultra-high number density of nano-oxide particles dispersed in the matrix. It has been generally used as a candidate structural material for cladding of fourth-generation fission reactors and future fusion reactors. The main manufacture process of ODS steel is advanced powder metallurgy technology, such as mechanical alloying (MA). Due to the limitations of mechanical alloying in engineering applications, the liquid metal (LM) route has been proposed to prepare ODS steel. Recently, the vacuum melting method is the most commonly used liquid metal route, and gives many interesting results. However, there are still many drawbacks compared with mechanical alloying, especially the tailoring of the oxide distribution. The current paper mainly discusses the precipitation mechanism and growth behavior of oxide particles, and the effects of the alloying elements on the nano-oxides in ODS steel prepared by mechanical alloying. An overview of the process of liquid metal route and the recent results of vacuum smelting method is also mentioned in the paper. Topics that need to be addressed in the future mechanical alloying investigation, and the further development and process optimization of the liquid metal route are prospected, which is expected to provide as a reference for the subsequent research work of the liquid metal route.
Key words:  ODS steel    nano-oxide    precipitation mechanism    alloying element
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TG142  
基金资助: 国家磁约束核聚变能研究发展专项(2018YFE0306102)
通讯作者:  *李慧,上海大学材料科学与工程学院副研究员、博士研究生导师。2006年于东北大学理学院材料物理专业本科毕业,2009年于上海大学材料科学与工程学院材料学专业硕士毕业,2011年于上海大学材料科学与工程学院材料学专业博士毕业,毕业后到上海大学工作至今。目前主要从事核材料、晶界工程、析出强化合金等方面的研究工作。发表论文50余篇,包括Materials Characterization等。huili@shu.edu.cn   
作者简介:  张孟超,2018年6月毕业于南阳理工学院,获得工学学士学位。现为上海大学材料科学与工程学院博士研究生,在李慧副研究员的指导下进行研究。目前主要研究领域为核材料。
引用本文:    
张孟超, 李慧. ODS钢中纳米氧化物析出长大机制的研究进展[J]. 材料导报, 2023, 37(18): 21100060-7.
ZHANG Mengchao, LI Hui. Recent Progress on the Precipitation and Growth Mechanism of Nano-oxides in ODS Steels. Materials Reports, 2023, 37(18): 21100060-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100060  或          http://www.mater-rep.com/CN/Y2023/V37/I18/21100060
1 Xu S, Chen L Z, Cao S G, et al. Materials Reports, 2019, 33(1), 78 (in Chinese).
徐帅, 陈灵芝, 曹书光, 等. 材料导报, 2019, 33(1), 78.
2 Huang Q Y, Li C J, Liu S J, et al. Chinese Journal of Nuclear Science and Engineering, 2009, 29(3), 260 (in Chinese).
黄群英, 李春京, 刘少军, 等. 核科学与工程, 2009, 29(3), 260.
3 Lyu Z. Atomic Energy Science and Technology, 2011, 45(9), 1105 (in Chinese).
吕铮. 原子能科学技术, 2011, 45(9), 1105.
4 Lyu Z, Liu C M. Journal of Materials and Metallurgy, 2012, 11(1), 51 (in Chinese).
吕铮, 刘春明.材料与冶金学报, 2012, 11(1), 51.
5 Yang F, Zhang Y, Jin S X, et al. Fujian Chemical Industry, 2014 (3), 1 (in Chinese).
杨峰, 张颖, 靳硕学, 等. 化学工程与装备, 2014 (3), 1.
6 Lyu Z, Liu C M. Journal of Materials and Metallurgy, 2011, 10(3), 203. (in Chinese).
吕铮, 刘春明.材料与冶金学报, 2011, 10(3), 203.
7 He J C, Wan F R. Journal of Functional Materials, 2014, 17(45), 17029 (in Chinese).
贺健超, 万发荣.功能材料, 2014, 17(45), 17029.
8 Chen Y X, Chen D X, Zhang J W. Materials Science and Technology, 2019, 27 (3), 29 (in Chinese).
陈禹锡, 陈东旭, 张峻巍.材料科学与工艺. 2019, 27 (3), 29.
9 Oksiuta Z, Lewandowska M, Unifantowicz P, et al. Fusion Engineering & Design, 2011, 86(9-11), 2417.
10 Mao X D, Oh K H, Jang J. Materials Characterization, 2016, 117, 91.
11 He P, Zhou Z J, Li M, et al. Journal of Iron and Steel Research, 2009, 21(11), 5 (in Chinese).
何培, 周张健, 李明, 等. 钢铁研究学报, 2009, 21(11), 5.
12 Xie R, Lyu Z, Shi Y N, et al. Transactions of Materials and Heat Treatment, 2018, 38(9), 58 (in Chinese).
谢锐, 吕铮, 石英男, 等. 材料热处理学报, 2018, 38(9), 58.
13 Rieken J R, Anderson I E, Kramer M J, et al. Journal of Nuclear Mate-rials, 2012, 428(1-3), 65.
14 Xie R, Lyu Z, Lu C Y, et al. Materials Reports, 2020, 34(8), 8141 (in Chinese).
谢锐, 吕铮, 卢晨阳, 等. 材料导报, 2020, 34(8), 8141.
15 Xie R, Lyu Z, Liu C M, et al. Transactions of Materials and Heat Treatment, 2019, 40(9), 121 (in Chinese).
谢锐, 吕铮, 刘春明, 等. 材料热处理学报, 2019, 40(9), 121.
16 Xie R, Lyu Z, Wang Q, et al. New Technology & New Process, 2019 (3), 7 (in Chinese).
谢锐, 吕铮, 王晴, 等. 新技术新工艺, 2019 (3), 7.
17 Pasebani S, Charit I. Journal of Alloys & Compounds, 2014, 599, 206.
18 Xie R, Lyu Z, Shi Y N, et al. Transactions of Materials and Heat Treatment, 2018, 39(9), 65 (in Chinese).
谢锐, 吕铮, 石英男, 等.材料热处理学报, 2018, 39(9), 65.
19 Zhang X X, Hong Z Y, Yan Q Z, et al. Transactions of Materials and Heat Treatment, 2019, 40(11), 69 (in Chinese).
张晓新, 洪志远, 燕青芝, 等. 材料热处理学报, 2019, 40(11), 69.
20 Shi Z M, Han F. Materials Research Innovations, 2015, 66, 304.
21 Shi Z M, Han F. Materials and Design, 2014, 66, 304.
22 Sarma M, Grants I, Kaldre I, et al. LOP Conference, 2017, 228, 12020.
23 Verhiest K, Mullens S, Graeve I D, et al. Ceramics International, 2014, 40(9), 14319.
24 Jian F G, Yan Q Z, Zhang X X, et al. Journal of Materials Research and Technology, 2019, 8(5), 3859.
25 Hong Z Y, Zhang X X, Yan Q Z, et al. Journal of Alloys and Compounds, 2019, 770, 831.
26 Yan Q, Hong Z. U.S. patent application, US20190144962A1, 2019.
27 Li M, Zhou Z J, Liao L, et al. Materials Reports, 2010, 24(15), 94 (in Chinese).
李明, 周张健, 廖璐, 等. 材料导报. 2010, 24(15), 94.
28 Zhang L, Ukai S, Hoshino T, et al. Acta Materialia, 2009, 57(12), 3671.
29 Swa B, Jing L A, Wl C, et al. Journal of Alloys and Compounds, 2020, 814, 152282.
30 Yan P Y, Yu L M, Liu Y C, et al. Journal of Alloys and Compounds, 2018, 739, 368.
31 Saber M, Xu W Z, Li L L, et al. Journal of Nuclear Materials, 2014, 452(1-3), 223.
32 Li Y F, Shen J J, Li F, et al. Materials Science & Engineering A, 2016, 654, 203.
33 Fu C L, Maja Krčmar, Painter G S, et al. Physical Review Letters, 2007, 99(22), 225502.
34 Wang M, Zhou Z J, Yan Z G, et al. Acta Metallurgica Sinica, 2013(2), 153(in Chinese).
王曼, 周张健, 闫志刚, 等.金属学报, 2013(2), 153.
35 He P, Zhou Z J, Li M, et al. Journal of Materials Engineering, 2010(9), 20 (in Chinese).
何培, 周张健, 李明, 等. 材料工程, 2010(9), 20.
36 Okuda T, Fujiwara M. Journal of Materials Science Letters, 1995, 14(22), 1600.
37 Kimura Y, Takaki S, Suejima S, et al. ISIJ International, 1999, 39(2), 176.
38 Lyu Z, Hu P H, Zhang G Y, et al. Journal of Materials and Metallurgy, 2015, 14(1), 67(in Chinese).
吕铮, 胡彭浩, 张国玉, 等.材料与冶金学报, 2015, 14(1), 67.
39 Xie R, Lyu Z, Lu C Y, et al. Transactions of Materials and Heat Treatment, 2014, 35(6), 127 (in Chinese).
谢锐, 吕铮, 卢晨阳, 等.材料热处理学报, 2014, 35(6), 127.
40 Xie R, Lyu Z, Lu C Y, et al. Acta Metallurgica Sinica, 2016, 52(9), 1053(in Chinese).
谢锐, 吕铮, 卢晨阳, 等.金属学报, 2016, 52(9), 1053.
41 Hsiung L L, Fluss M J, Tumey S J, et al. Physical Review, 2010, 82(18), 184103.
42 Dai L, Liu Y C, Dong Z Z. Powder Technology, 2012, 217, 281.
43 Sakasegawa H, Legendre F, Boulanger L, et al. Journal of Nuclear Materials, 2011, 417(1-3), 229.
44 Sawoong K, Ohtsuka S, Kaito T, et al. Journal of Nuclear Materials, 2011, 417, 209.
45 Schaffer G B, Loretto M H, Smallman R E, et al. Acta Metallurgica, 1989, 37(9), 2551.
46 Williams C A, Unifantowicz P, Baluc N, et al. Acta Materialia, 2013, 61(6), 2219.
47 Oksiutaa Z, Lewandowska M, Unifantowicz P, et al. Fusion Engineering and Design, 2011, 86(9-11), 2417.
48 Kim I S, Choi B Y, Kang C Y, et al. ISIJ International, 2003, 43(10), 1640.
49 Xie R, Lyu Z, Xu C W, et al. Materials Reports, 2020, 34(22), 22111(in Chinese).
谢锐, 吕铮, 徐长伟, 等. 材料导报, 2020, 34(22), 22111.
50 Auger M A,Castro V D, Leguey T, et al. Journal of Nuclear Materials, 2014, 445(1-3), 600.
51 Liu C X, Li H J, Dong H Q, et al. Journal of Alloys & Compounds, 2017, 702, 538.
52 Kim T K, Han C H, Kang S H, et al. Current Nanoscience, 2014, 10(1), 94.
53 Xu S, Zhou Z J, Jia H D. Atomic Energy Science and Technology, 2019, 53(10), 1885(in Chinese).
徐帅, 周张健, 贾皓东.原子能科学技术, 2019, 53(10), 1885.
54 Sakasegawa H, Chaffron L, Legendre F, et al. Journal of Nuclear Mate-rials, 2009, 386, 511.
55 Xu H J, Lyu Z, Gao H, et al. Transactions of Materials and Heat Treatment, 2015, 36(10), 124. (in Chinese).
徐海健, 吕铮, 高昊, 等. 材料热处理学报, 2015, 36(10), 124.
56 Eiselt C C, Klimenkov M, Lindau R, et al. Journal of Nuclear Materials, 2011, 416(1), 30.
57 Chen L Z, Li S F, Liao L, et al. Transactions of Materials and Heat Treatment, 2019, 40(11), 124(in Chinese).
陈灵芝, 李少夫, 廖璐, 等. 材料热处理学报, 2019, 40(11), 124.
58 Lee, Hoon J. Applied Mechanics & Materials, 2011, 87, 243.
59 Ribis J, Carlan Y D. Acta Materialia, 2012, 60(1), 238.
60 Klimiankou M, Lindau R, Möslang A. Journal of Crystal Growth, 2003, 249(1), 381.
61 Li M, Zhou Z J, Liu X T, et al. In: Chinese Nuclear Society. Beijing, 2009, pp. 2050 (in Chinese).
李明, 周张健, 刘晓彤, 等. 中国核学会学术年会. 北京, 2009, pp. 2050.
62 Yamashita S, Ohtsuka H, Akasaka N, et al. Philosophical Magazine Letters, 2004, 84(8) 525.
63 Klimenkov M, Lindau R, Möslang A. Journal of Nuclear Materials, 2009, 386, 553.
64 Marquis E A. Applied Physics Letters, 2008, 93(18), 181904.
65 Verhiest K, Mullens S, Graeve I D. Ceramics International, 2014, 40(9), 14319.
66 Mohammad A M, Nili-Ahmadabadi M, Forghani F, et al. Scientific Reports, 2016, 6(1), 38621.
[1] 汪建强, 徐斌, 谢碧君, 张健杨, 孙明月. ODS钢在热加工过程中纳米氧化物演化行为的研究进展[J]. 材料导报, 2022, 36(19): 20110267-8.
[2] 彭晶晶, 刘静, 张弦, 成林, 吴开明, 张涛. 合金元素在Al基牺牲阳极中的作用机理[J]. 材料导报, 2022, 36(17): 20090294-8.
[3] 曾小川, 李学军, 邓小云, 胡侨丹, 尤磊. SA508 Gr.4N钢的辐照脆化性能研究进展[J]. 材料导报, 2021, 35(Z1): 438-442.
[4] 张先满, 陈再雨, 罗洪峰. 合金元素对Fe/Al界面反应影响的研究进展[J]. 材料导报, 2021, 35(7): 7145-7154.
[5] 乔家龙, 郭飞虎, 付兵, 胡金文, 项利, 仇圣桃. 无取向硅钢中硫化物的析出机理[J]. 材料导报, 2021, 35(20): 20106-20112.
[6] 明玥, 游国强, 姚繁锦, 曾升, 赵建华, 李卫荣. 金属镁的氧化及氧化机理研究进展[J]. 材料导报, 2021, 35(19): 19134-19141.
[7] 杨平, 毛育青, 李芊芃, 何良刚, 柯黎明. 合金元素对Cu/Sn-/Cu回流焊焊点界面微观结构及剪切性能的影响[J]. 材料导报, 2021, 35(14): 14156-14160.
[8] 郝文俊, 孙荣禄, 牛伟, 谭金花, 李小龙. 合金元素影响高熵合金涂层组织及力学性能综述[J]. 材料导报, 2020, 34(Z2): 330-333.
[9] 吴韬, 段佳伟, 陈小明, 俞立涛, 陈云祥, 石淑琴. 合金元素对激光熔覆高熵合金涂层影响的研究进展[J]. 材料导报, 2020, 34(Z1): 413-419.
[10] 杨晓萌, 安子冰, 陈艳辉. 高熵合金抗氧化性能研究现状及展望[J]. 材料导报, 2019, 33(Z2): 348-355.
[11] 田亚强, 黎旺, 郑小平, 魏英立, 宋进英, 陈连生. 合金元素在淬火配分钢中的应用研究进展[J]. 材料导报, 2019, 33(7): 1109-1118.
[12] 孙娅, 吴长军, 刘亚, 彭浩平, 苏旭平. 合金元素对CoCrFeNi基高熵合金相组成和力学性能影响的研究现状[J]. 材料导报, 2019, 33(7): 1169-1173.
[13] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[14] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[15] 邹芹, 党赏, 李艳国, 王明智, 熊建超. Fe-基形状记忆合金的研究进展[J]. 材料导报, 2019, 33(23): 3955-3962.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed