Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21012-21021    https://doi.org/10.11896/cldb.21080227
  环境催化材料 |
基于零价铁的高级氧化技术与装备
熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波
四川大学建筑与环境学院,中德水环境与健康研究中心,成都 610065
Advanced Oxidation Processes and Equipment Based on Zero-valent Iron
XIONG Zhaokun, ZHANG Heng, LIU Yang, ZHOU Peng, HE Chuanshu, HUANG Rongfu, DU Ye, LAI Bo
Sino-German Centre for Water and Health Research, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
下载:  全 文 ( PDF ) ( 5281KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 零价铁(ZVI)具有还原电位低、可定向还原毒性基团、价廉易得、环境友好等特征,已广泛应用于一般工业废水的预处理。但零价铁在使用过程中存在pH适用范围窄、易生成钝化膜、电子利用率低等问题。以零价铁为核心的高级氧化技术逐渐成为国内外学者的研究热点。零价铁与氧化剂的联用不仅显著提高了污染物的去除效果,而且拓宽了零价铁的使用范围。由于零价铁、氧化剂与污染物之间的电子迁移机制非常复杂,针对零价铁/氧化剂体系中复杂产物与作用机制的解析得到了不断的探索与发展。本文综述了基于零价铁的高级氧化技术与装备,分别介绍了零价铁与氧气、过氧化氢、臭氧、过硫酸盐、高锰酸盐等氧化剂结合的高级氧化体系,从电子迁移的角度阐述了零价铁与氧化剂的相互作用机理,分析了不同氧化剂存在条件下零价铁的腐蚀产物及其催化作用,并对基于零价铁的协同催化氧化技术进行了介绍,同时对实际废水处理过程中基于零价铁的高级氧化处理装备与组合工艺进行了总结,最后就目前零价铁/氧化剂体系存在的问题进行了分析并展望其应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊兆锟
张恒
刘杨
周鹏
何传书
黄荣夫
杜烨
赖波
关键词:  零价铁  高级氧化技术  过氧化氢  过硫酸盐  臭氧  装备与工艺    
Abstract: Zero-valent iron (ZVI) has the characteristics of low reduction potential, directional reduction of toxic groups, low price and easy availability, and environmental friendliness. ZVI has been widely used in the pretreatment of general industrial wastewater. However, ZVI also has problems such as narrow pH range, easy formation of passivation film, and low electron utilization. Advanced oxidation processes based on ZVI have gradually become a research hotspot. The combining of ZVI and oxidants not only significantly improves the removal effect of pollutants, but also broadens the applied range of ZVI. The electron transfer mechanisms among ZVI, oxidants and pollutants are very complicated. The analysis of the complex products and mechanisms in the ZVI/oxidant system has been continuously explored and developed. This article reviews the advanced oxidation processes and equipments based on ZVI. The advanced oxidation systems that combining ZVI with oxygen, hydrogen peroxi-de, ozone, persulfate, permanganate and other oxidants are introduced. The interaction mechanism between ZVI and oxidants is described from the perspective of electron migration. The corrosion products of ZVI and their catalytic capacity in the presence of different oxidants are analyzed. Moreover, the synergistic catalytic oxidation technologies based on ZVI are introduced. Furthermore, advanced oxidation treatment equipment and combined processes based on ZVI in practical wastewater treatment are summarized. Finally, the problems existing in the current ZVI/oxidant systems are analyzed and its application prospects are prospected.
Key words:  zero-valent iron    advanced oxidation processes    hydrogen peroxide    persulfate    ozone    equipment and technology
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  X505  
基金资助: 国家自然科学基金(51878423;52070133)
通讯作者:  laibo@scu.edu.cn   
作者简介:  熊兆锟,四川大学建筑与环境学院副研究员、硕士研究生导师。2013年6月本科毕业于四川大学建筑与环境学院,2018年6月在四川大学建筑与环境学院环境工程专业取得博士学位,2018年7月进入四川大学工作。主要从事环境工程水污染控制技术的科研工作,包括铁基材料耦合其他高级氧化技术的基础与应用,医院污水同步消杀除污处理技术与集成装备开发。先后主持中国博士后科学基金特别资助、中国博士后科学基金面上基金、四川省科技厅应用基础研究等7项科研项目。共发表SCI论文30余篇,其中以第一作者或通讯作者在Water Research、Applied Catalysis B: Environmental、Chemical Engineering Journal、Journal of Hazardous Materials等环境领域权威期刊发表论文20余篇(高被引论文5篇,热点论文2篇,封面文章1篇)。担任Chinese Chemical Letters期刊青年编委。获中国环保产业协会环境技术进步一等奖和首届川渝科技学术大会优秀论文二等奖。
赖波,教授,博士研究生导师,四川大学环境科学与工程系主任,国家级青年人才,中国环境科学学会青年科学家金奖、四川省青年科技奖、四川省环境科学学会青年科技奖获得者,入选全球前2%顶尖科学家榜单(World's Top 2% Scientists 2020)。主要针对高难度化工废水和新兴污染物,开发高级氧化处理技术装备。主持国家级及省部级课题11项,科技成果转化和工程应用项目5项,累计到校科研经费超2000万元。担任中国卓越行动期刊Chinese Chemical Letters执行主编/高级编委、Water Reuse编辑,Journal of Hazardous Materials编委,Journal of Environmental Science青年编委、《水生态学杂志》编委、《土木与环境工程学报(中英文)》常务编委、《中国沼气》编委。以第一作者/通讯作者在Environmental Science & Technology、Water Research、Applied Catalysis B: Environmental、Chemical Engineering Journal等期刊发表SCI论文140余篇,ESI高被引论文18篇,热点论文3篇,获得2020年首届川渝科技学术大会优秀论文二等奖,获Elsevier Symposium on “Chemistry for a Sustainable Future” Best Paper Award;在环境科学、中国环境科学、环境科学研究等中文核心期刊发表论文20篇。中国发明专利授权16项,实用新型专利3项,专利已成功工程应用,彻底解决了民用起爆药/军用底火药生产行业高毒性工业废水处理难题,并在高难度化工废水处理行业进行推广应用,获得四川省科技进步一等奖(第一)和中国环保产业协会环境技术进步一等奖(第一)。
引用本文:    
熊兆锟, 张恒, 刘杨, 周鹏, 何传书, 黄荣夫, 杜烨, 赖波. 基于零价铁的高级氧化技术与装备[J]. 材料导报, 2021, 35(21): 21012-21021.
XIONG Zhaokun, ZHANG Heng, LIU Yang, ZHOU Peng, HE Chuanshu, HUANG Rongfu, DU Ye, LAI Bo. Advanced Oxidation Processes and Equipment Based on Zero-valent Iron. Materials Reports, 2021, 35(21): 21012-21021.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21080227  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21012
1 Zhang L Z, Zhang W X. Acta Chimica Sinica, 2017, 75(6), 519 (in Chinese).
张礼之, 张伟贤.化学学报, 2017, 75(6), 519.
2 Wang K S, Lin C L, Wei M C, et al. Journal of Hazardous Materials, 2010, 182(1-3), 886.
3 Zhang Y J, Ying J Y, Chen X F.Environmental Pollution and Control, 2000(5), 33 (in Chinese).
张亚静, 应金英, 陈晓锋.环境污染与防治, 2000(5), 33.
4 Su C, Puls R W, Krug T A, et al. Water Research, 2012, 46(16), 5071.
5 Qing X F, Cao J Z, Wang X L, et al. Materials Reports A:Review Papers, 2019, 33(5), 1550 (in Chinese).
秦小凤, 曹嘉真, 汪小莉,等. 材料导报:综述篇, 2019, 33(5), 1550.
6 Yin W, Wu J, Li P, et al.Chemical Engineering Journal, 2012, 184, 198.
7 Guan T Z, Xu X J, Meng J W.Chinese Journal of Environmental Engineering, 2013(6), 123 (in Chinese).
管堂珍, 徐晓军, 孟均旺.环境工程学报, 2013(6), 123.
8 Shimizu A, Tokumura M, Nakajima K, et al.Journal of Hazardous Materials, 2012, 201-202, 60.
9 Huang P, Ye Z, Xie W, et al.Water Research, 2013, 47(12), 4050.
10 Feng J W, Xu Y X, Lan X P, et al. Materials Reports A:Review Papers, 2014, 28(8), 83 (in Chinese).
冯婧微, 徐英侠, 兰希平,等. 材料导报:综述篇, 2014, 28(8), 83.
11 Hwang Y H, Kim D G, Shin H S. Journal of Hazardous Materials, 2011, 185(2-3), 1513.
12 Bae S, Hanna K.Environmental Science & Technology, 2015, 49(17), 10536.
13 Noubactep C.Water Research, 2015, 85, 114.
14 Li S Q, Gu J L, Hong J, et al. Environmental Science & Technology, 2012, 12(35), 206 (in Chinese).
李圣全, 谷静丽, 洪军,等. 环境科学与技术, 2012, 12(35), 206.
15 Keenan C R, Sedlak D L. Environmental Science & Technology, 2008, 42(4), 1262.
16 Xiong Z, Lai B, Yang P, et al.Journal of Hazardous Materials, 2015, 297, 261.
17 Lee H, Lee H J, Kim H E, et al. Journal of Hazardous Materials, 2014, 265, 201.
18 Ma J, He D, Collins R N, et al. Water Research, 2016, 105, 331.
19 Lai B, Zhou Y, Yang P, et al.Journal of Hazardous Materials, 2012, 241-242, 241.
20 Liu A, Liu J, Han J, et al.Journal of Hazardous Materials, 2017, 322(Pt A), 129.
21 Triszcz J M, Porta A, Einschlag F S G. Chemical Engineering Journal, 2009, 150(2-3), 431.
22 Hug S J, Leupin O. Environmental Science & Technology, 2003, 37(12), 2734.
23 Huang T, Zhang G, Zhang N, et al.Chemical Engineering Journal, 2018, 336, 233.
24 Hundal L S, Singh J, Bier E L, et al. Environmental Pollution, 1997, 97(1), 55.
25 Zhou T, Li Y, Ji J, et al.Separation and Purification Technology, 2008, 62(3), 551.
26 Cheng R, Cheng C, Liu G H, et al. Chemosphere, 2015, 141, 138.
27 Fornazari A L D T, Labriola V F, da Silva B F, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105761.
28 de Souza P A L, Camacho F G, de Almeida da Silva I R, et al. Chemical Engineering Journal, 2020, 393, 124665.
29 Segura Y, Martínez F, Melero J A. Applied Catalysis B: Environmental, 2013, 136-137, 64.
30 Xue G, Wang Q, Qian Y, et al.Journal of Hazardous Materials, 2019, 368, 840.
31 Kallel M, Belaid C, Boussahel R, et al.Journal of Hazardous Materials, 2009, 163(2-3), 550.
32 Bogacki J P, Al-Hazmi H. Archives of Environmental Protection, 2017, 43(3), 24.
33 Xing M, Xu W, Dong C, et al.Chem, 2018, 4(6), 1359.
34 Zhou P, Ren W, Nie G, et al.Angewandte Chemie International Edition English, 2020, 132(38),16660.
35 Enric B I S. Chemical Review, 2009, 109, 6570.
36 Kasprzyk-Hordern B, Ziółek M, Nawrocki J.Applied Catalysis B: Environmental, 2003, 46(4), 639.
37 Nawrocki J, Kasprzyk-Hordern B.Applied Catalysis B: Environmental, 2010, 99(1-2), 27.
38 Cui Y R, Xiao S N, Wu Q, et al. Journal of Henan Normal University (Natural Science Edition), 2013, 41(2), 78 (in Chinese).
崔延瑞, 肖颂娜, 吴青,等. 河南师范大学学报(自然科学版), 2013, 41(2), 78.
39 Lv A, Hu C, Nie Y, et al.Applied Catalysis B: Environmental, 2012, 117-118, 246.
40 Beltran F J, Rivas F J, Montero-de-Espinosa R. Water Research, 2005, 39(15), 3553.
41 Zeng Z, Zou H, Li X, et al.Chemical Engineering and Processing: Process Intensification, 2012, 60, 1.
42 Ziylan A, Ince N H. Catalysis Today, 2015, 240, 2.
43 Xiong Z, Lai B, Yuan Y, et al.Chemical Engineering Journal, 2016, 302, 137.
44 Xiong Z, Yue Y, Bo L, et al.RSC Advances, 2016, 6, 55726.
45 Fei J, Lin X, Li X, et al.Science of the Total Environment, 2021, 774,145821.
46 Lai B, Zhang Y, Chen Z, et al.Applied Catalysis B: Environmental, 2014, 144, 816.
47 Stephen J B, David M C, Lynn R A, et al. Environmental Science & Technology, 2006, 40, 1485.
48 Wu D L, Ma L M, Xu W Y.Technology of Water Treatment, 2005(5), 125 (in Chinese).
吴德礼, 马鲁铭, 徐文英.水处理技术, 2005(5), 125.
49 Xiong Z K, Cao J Y, Lai B, et al.Journal of Industrial and Engineering Chemistry, 2018, 59, 196.
50 Cao J Y, Xiong Z K, Yuan Y, et al.RSC Advances, 2016, 6(97), 94467.
51 Xiong Z, Cao J, Yang D, et al.Chemosphere, 2016, 166, 343.
52 Anipsitakis G P, Dionysiou D D.Environmental Science & Technology, 2003, 37(20), 4790.
53 Wang J, Wang S.Chemical Engineering Journal, 2018, 334, 1502.
54 Ike I A, Linden K G, Orbell J D, et al.Chemical Engineering Journal, 2018, 338, 651.
55 Buxton G V, Greenstock C L, Helman W P, et al.Journal of Physical and Chemical Reference Data, 1988, 17(2), 513.
56 Ghanbari F, Moradi M.Chemical Engineering Journal, 2017, 310, 41.
57 Xiao Y, Ji J, Zhu L, et al.Chemical Engineering Journal, 2020, 383, 123158.
58 Anipsitakis G P, Dionysiou D D.Environmental Science & Technology, 2004, 38(13), 3705.
59 Zhao J, Zhang Y, Quan X, et al.Separation and Purification Technology, 2010, 71(3), 302.
60 Drzewicz P, Perez-Estrada L, Alpatova A, et al.Environmental Science & Technology, 2012, 46(16), 8984.
61 Zhao L, Ji Y, Kong D, et al.Chemical Engineering Journal, 2016, 303, 458.
62 Li Y, Pan L, Zhu Y, et al.Water Research, 2019, 163, 114912.
63 Liang C, Guo Y Y.Environmental Science & Technology, 2010, 44(21), 8203.
64 Hussain I, Zhang Y, Huang S, et al.Chemical Engineering Journal, 2012, 203, 269.
65 Wang Z, Jiang J, Pang S, et al.Environmental Science & Technology, 2018, 52(19), 11276.
66 Wang Z, Qiu W, Pang S Y, et al.Chemical Engineering Journal, 2019, 371, 842.
67 Wang Z, Qiu W, Pang S, et al.Water Research, 2020, 172, 115504.
68 Dong H, Li Y, Wang S, et al.Environmental Science & Technology Letters, 2020, 7, 219.
69 Ji Q, Li J, Xiong Z, et al.Chemosphere, 2016, 172, 10.
70 Zou S, Chen Q, Liu Y, et al.Chinese Chemical Letters, 2021, 32(6), 2066.
71 Cao J, Lai L, Lai B, et al.Chemical Engineering Journal, 2019, 364, 45.
72 Kim C, Ahn J Y, Kim T Y, et al. Environmental Science & Technology, 2018, 52(6), 3625.
73 Li H, Wan J, Ma Y, et al.Chemical Engineering Journal, 2014, 250, 137.
74 Guo X, Yang Z, Dong H, et al.Water Research, 2016, 88, 671.
75 Li Y, Guo X, Dong H, et al.Chemical Engineering Journal, 2018, 345, 432.
76 Xie P, Zhang L, Chen J, et al.Water Research, 2019, 149, 169.
77 Guo X, Yang Z, Liu H, et al.Separation and Purification Technology, 2015, 146, 227.
78 Li J, Zhang X, Sun Y, et al.Environmental Science & Technology, 2017,51(23),13533.
79 Fan D, Lan Y, Tratnyek PG, et al.Environmental Science & Technology, 2017, 51(22), 13070.
80 Xu J, Avellan A, Li H, et al. Advanced Materials, 2020, 32, 1906910.
81 Li Y, Zhao X, Yan Y, et al.Chemical Engineering Journal, 2019, 376, 121302.
82 Li J, Ji Q, Lai B, et al.Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 686.
83 Li J, Liu Q, Ji Q Q, et al.Applied Catalysis B: Environmental, 2016, 200, 633.
84 Zhang H, Xiong Z, Ji F, et al.Chemosphere, 2017, 176, 192.
85 Ji F, Zhang H, Li J, et al.Journal of Chemical Technology & Biotechnology, 2017, 92(10), 2616.
86 Ji F, Yin H, Zhang H, et al.Journal of Cleaner Production, 2018, 188, 860.
87 Zhan P, Sun W, Liao X L, et al. Technology of Water Treatment, 2019, 45(12), 37 (in Chinese).
占鹏, 孙微, 廖小龙,等. 水处理技术, 2019, 45(12), 37.
88 Chen S S, Hsu H D, Lin Y J, et al. Water Science and Technology, 2008, 58(3), 661.
89 Ruangchainikom C, Liao C H, Anotai J, et al. Water Research, 2006, 40(2), 195.
90 Li X, Ma J, Gao Y, et al.Chemical Engineering Journal, 2022, 427, 131995.
91 李爱民, 姜笔存, 陆朝阳. 中国专利, CN201010556065.6, 2010-11-24.
92 张伟贤, 李少林, 梁飞鹏. 中国专利, CN103172151A, 2013-06-26.
93 王晛, 李海利, 黄帆, 等. 中国专利, CN202021584423.X, 2021-03-19.
94 王晛, 李海利, 黄帆,等. 中国专利, CN202010769575.5, 2020-12-11.
95 赖波, 张恒. 中国专利, CN201920330326.9, 2020-03-06.
96 张恒, 赖波. 中国专利, CN201821232371.2, 2019-04-02.
[1] 雷静, 陈子茜, 李怡招, 曹亚丽. 用于电催化氧还原制备双氧水的催化剂的研究进展[J]. 材料导报, 2021, 35(9): 9140-9149.
[2] 郝喜娟, 赵沈飞, 张春媚, 胡芳馨, 杨鸿斌, 郭春显. 基于纳米仿生酶构建电化学生物传感器用于活性氧检测[J]. 材料导报, 2021, 35(3): 3183-3193.
[3] 张瑞阳, 王姝焱, 黎邦鑫, 张艾丽, 张骞, 周莹. 气相臭氧分解催化材料的研究进展[J]. 材料导报, 2021, 35(21): 21037-21049.
[4] 邱晶, 赵明, 王健礼, 陈耀强. 地表臭氧分解用氧化锰研究进展[J]. 材料导报, 2021, 35(21): 21050-21057.
[5] 王德军, 李慧, 姜锡仁, 赵朝成, 赵玉慧, 邓春梅, 王鑫平. 高级氧化技术去除水环境中多环芳烃的研究进展[J]. 材料导报, 2020, 34(Z2): 507-512.
[6] 代朝猛, 王泽雨, 段艳平, 刘曙光, 涂耀仁, 李彦. 过硫酸盐高级氧化技术在土壤和地下水修复中的研究进展[J]. 材料导报, 2020, 34(Z1): 107-110.
[7] 黄秋月, 张亚茹, 李佳贤, 时霄霄, 缪玮珉, 巫佳思, 杜金志. 自驱动二氧化锰纳米马达的制备与性能[J]. 材料导报, 2020, 34(6): 6033-6038.
[8] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[9] 李晨旭, 彭伟, 方振东, 刘杰. 过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化及氧化降解水中污染物的研究进展[J]. 《材料导报》期刊社, 2018, 32(13): 2223-2229.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed