Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21070182-13    https://doi.org/10.11896/cldb.21070182
  无机非金属及其复合材料 |
小型化柔性印制天线:材料、工艺及应用
杨文冬*, 孙浩强, 南敬昌, 刘蕊
辽宁工程技术大学电子与信息工程学院,辽宁 葫芦岛 125105
Printed Miniaturized Flexible Antennas: Materials, Processes and Applications
YANG Wendong*, SUN Haoqiang, NAN Jingchang, LIU Rui
School of Electronic and Information Engineering, Liaoning Technical University, Huludao 125105, Liaoning, China
下载:  全 文 ( PDF ) ( 11769KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 柔性天线具有质量轻、尺寸小、厚度薄和易共形等特点,在当前和未来通信、医疗等系统中显示出重要的应用前景。柔性印制电子技术的发展为柔性天线的制作提供了可能性。如何设计和印制出满足无线通信功能和易集成的小型化柔性天线成为了热门研究方向,柔性材料的研发、印刷工艺的巧妙选择和天线形式及结构的特别设计成为了关键。本文综述了柔性印制天线在材料类别和属性、制造技术与特点、小型化/可穿戴结构设计策略及应用方面的最新研究进展,提出了柔性印制天线制作的路线,一是天线设计的考量,涉及柔性衬底、导电材料及天线形式的选择;二是天线的结构设计和实物测试,需要围绕实际应用需求进行规划。本文分析探讨了天线在材料、工艺和设计三个方面的技术难点和需要解决的问题,展望了各自的未来发展方向。综合来看,金属类导电材料、耐热聚合物和可拉伸衬底材料是柔性材料理想的选择;印刷工艺的选择取决于天线的具体应用场景和材料的流体参数;小型化、多功能、多频带是柔性印制天线结构设计的走向。结合通信和医疗等应用,未来柔性天线的设计技术应在引入新材料的基础上做出改进以适用于更多场合。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨文冬
孙浩强
南敬昌
刘蕊
关键词:  柔性电子  通信  天线  导电材料  印刷    
Abstract: Flexible antennas are of great interest for important applications in current and future communication and medical systems due to their distinctive features of lightweight, small size, thin thickness, and easy conformal capabilities. Printed flexible electronic technology allows for the manufacture of flexible antennas. The development of flexible materials, the rational selection of printing techniques, and the unique antenna structure design have all become critical points in the research on how to design and print miniaturized flexible antennas that can meet wireless communication functions and are easy to integrate. This paper reviews recent advances in the field of flexible printed antennas, with particular attention on material categories and properties, manufacturing technologies, structure design strategies for miniaturization or wearability, and applications. The fabrication route of a flexible printed antenna is proposed: one is the selection of flexible materials and antenna form, which includes the flexible substrate and conductive material; the other is the structural design and testing of the antenna, which must be done in accordance with the actual application requirements. The challenges and key issues in the aspects of the antenna’s material, process, and design are discussed, and future development is also proposed. As for materials, metallic conductive materials, heat-resistant polymers, and stretchable substrate materials are excellent choices. The selection of the printing technique is determined by the application and the rheological parameters of the printable materials. Miniaturization, multi-function, and multi-band are the desired antenna characteristics. In conjunction with communications and medical applications, as well as the adoption of new materials, the design of flexible printed antennas should be continuously improved in order to be suitable for more occasions in the future.
Key words:  flexible electronics    communication    antenna    conductive material    printing
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  TN826  
基金资助: 辽宁工程技术大学博士启动经费(21-1039);国家自然科学基金(61971210);国家自然科学基金青年基金(61701211);辽宁省特聘教授项目(551710007004)
通讯作者:  * 杨文冬,辽宁工程技术大学电子与信息工程学院教授、硕士研究生导师。2019年博士毕业于英国赫瑞瓦特大学电子工程专业,2019年8月—2020年11月在德国柏林亥目赫兹材料与能源中心和柏林洪堡大学柔性电子联合研究室做博士后研究。2010—2015年任中科院理化技术研究所助理研究员。主要从事柔性/印刷电子材料和印刷光电/无线传输器件方面的基础科学和应用研究。迄今为止,在国际知名期刊ACS Applied Nano Materials、ACS Applied Electronic Materials、Journal of Materials Chemistry C、Nanoscale等发表论文30余篇。wendong_2007@163.com   
引用本文:    
杨文冬, 孙浩强, 南敬昌, 刘蕊. 小型化柔性印制天线:材料、工艺及应用[J]. 材料导报, 2023, 37(12): 21070182-13.
YANG Wendong, SUN Haoqiang, NAN Jingchang, LIU Rui. Printed Miniaturized Flexible Antennas: Materials, Processes and Applications. Materials Reports, 2023, 37(12): 21070182-13.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070182  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21070182
1 Yang W, List-Kratochvil E J, Wang C. Journal of Materials Chemistry C, 2019, 7(48), 15098.
2 Tran T S, Dutta N K, Choudhury N R. Advances in Colloid and Interface Science, 2018, 261, 41.
3 Yin Z, Huang Y, Bu N, et al. Chinese Science Bulletin, 2010, 55(30), 3383.
4 Cui Z. Printed electronics: materials, technologies and applications, John Wiley & Sons, Singapore, 2016, pp.13.
5 Leenen M A, Arning V, Thiem H, et al. Physica Status Solidi (A), 2009, 206(4), 588.
6 Topsakal E. In: 2009 International Conference on Electromagnetics in Advanced Applications. IEEE, Turin, 2009, pp.890.
7 Koga H, Inui T, Miyamoto I, et al. RSC Advances, 2016, 6(87), 84363.
8 Paracha K N, Rahim S K A, Chattha H T, et al. International Journal of Antennas and Propagation, 2018, 2018, 1.
9 Lamminen A, Arapov K, de With G, et al. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1883.
10 Kubo M, Li X, Kim C, et al. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, Florida, 2011, pp.1582.
11 Song L, Myers A C, Adams J J, et al. ACS Applied Materials & Interfaces, 2014, 6(6), 4248.
12 Smith P, Shin D Y, Stringer J, et al. Journal of Materials Science, 2006, 41(13), 4153.
13 Dearden A L, Smith P J, Shin D Y, et al. Macromolecular Rapid Communications, 2005, 26(4), 315.
14 Adner D, Wolf F M, Möckel S, et al. Thin Solid Films, 2014, 565, 143.
15 Deng D, Qi T, Cheng Y, et al. Journal of Materials Science: Materials in Electronics, 2014, 25(1), 390.
16 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830.
17 Walker S Band Lewis J A. Journal of the American Chemical Society, 2012, 134(3), 1419.
18 Yang W, Mathies F, Unger E L, et al. Journal of Materials Chemistry C, 2020, 8(46), 16443.
19 Chen C, Chen C, Dong T Y, et al. Acta Materialia, 2012, 60(16), 5914.
20 Shankar R, Groven L, Amert A, et al. Journal of Materials Chemistry, 2011, 21(29), 10871.
21 Shen W F, Zhang X P, Huang Q J, et al. Nanoscale, 2014, 6(3), 1622.
22 Du D, Yang X, Yang Y, et al. Micromachines, 2019, 10(1), 42.
23 Chen S, Guan Y, Li Y, et al. Journal of Materials Chemistry C, 2017, 5(9), 2404.
24 Pourahmadazar J, Denidni T A. Microwave and Optical Technology Letters, 2018, 60(4), 887.
25 Baytöre C, Zoral E Y, Göçen C, et al. In: 2018 28th International Conference Radioelektronika (Radioelektronika). Prague, 2018, pp.1.
26 Li Z, Sinha S K, Treich G M, et al. Journal of Materials Chemistry C, 2020, 8(17), 5662.
27 Chen X, Liu X, Li S, et al. Nanoscale, 2020, 12(20), 10949.
28 Qiu Y, Jung Y H, Lee S, et al. Electronics Letters, 2014, 50(24), 1782.
29 Li W, Hei Y, Grubb P M, et al. IEEE Access, 2018, 6, 50290.
30 Simorangkir R B, Kiourti A, Esselle K P. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3), 493.
31 Huang J S, Jiang T Y, Wang Z X, et al. Microwave and Optical Techno-logy Letters, 2016, 58(5), 1232.
32 Mansour A, Shehata N, Hamza B, et al. International Journal of Antennas and Propagation, 2015, 2015, 845042.
33 Khaleel H R, Al-Rizzo H M, Rucker D G, et al. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 564.
34 Elobaid H A E, Rahim S K A, Himdi M, et al. IEEE Antennas and Wireless Propagation Letters, 2016, 16, 1333.
35 Cheng C X, Zhang F S. Journal of Microwaves, 2014, 30 (4), 25 (in Chinese).
程春霞, 张福顺. 微波学报, 2014, 30 (4), 25.
36 Whittow W G, Chauraya A, Vardaxoglou J, et al. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71.
37 Hu G, Kang J, Ng L W, et al. Chemical Society Reviews, 2018, 47(9), 3265.
38 Lei P D. Printability of particle-free conductive ink of ink-jet based on RFID Antenna. Master’s Thesis, Tianjin University of Science and Technology, China, 2016 (in Chinese).
雷普东. 基于RFID天线无颗粒喷墨导电墨水印刷适性研究. 硕士学位论文, 天津科技大学, 2016.
39 Guo X, Hang Y, Xie Z, et al. Microwave and Optical Technology Letters, 2017, 59(1), 204.
40 Li P. The mechanical research of flexible printing patch antenna. Master’s Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
李鹏. 柔性印刷贴片天线的力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2014.
41 Hu J Q, Li P, Dai F H. Journal of Institute of Technology, 2018, 50(5), 18 (in Chinese).
胡建强, 李鹏, 戴福洪. 哈尔滨工业大学学报, 2018, 50(5), 18.
42 Li W, Meredov A, Klionovski K, et al. In: 2019 IEEE Indian Confe-rence on Antennas and Propogation (InCAP). Ahmedabad, 2019, pp.1.
43 Zhong T, Jin N, Yuan W, et al. Materials, 2019, 12(18), 3036.
44 Ram P, Banu N M, Light R R J. Materials Today: Proceedings, 2021, 45, 2508.
45 Mirzaee M, Noghanian S, Wiest L, et al. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver, 2015, pp.1308.
46 Jun S, Sanz-Izquierdo B, Summerfield M. In: 2015 Loughborough Antennas & Propagation Conference (LAPC). Loughborough, 2015, pp.1.
47 Trajkovikj J, Zürcher J F, Skrivervik A K. In: 2012 Loughborough Antennas & Propagation Conference (LAPC). Loughborough, 2012, pp.1.
48 Inui T, Koga H, Nogi M, et al. Advanced Materials, 2015, 27(6), 1112.
49 Subramaniam S, Dhar S, Patra K, et al. In: 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis, 2014, pp.309.
50 Hussain N, Awan W A, Naqvi S I, et al. IEEE Access, 2020, 8, 173298.
51 Salonen P, Yang F, Rahmat-Samii Y, et al. In: IEEE Antennas and Propagation Society Symposium. Monterey, 2004, 1 pp.451.
52 Chen S. Study on the textile substrate tag antenna based on conductive ink. Master’s Thesis, Wuhan University of Technology, China, 2017 (in Chinese).
陈硕. 基于导电油墨的纺织物基底标签天线研究. 硕士学位论文, 武汉理工大学, 2017.
53 Cheng G. Investigation on silver ink printed textile antenna for wearable application. Master’s Thesis, Beijing Institute of Technology, China, 2018 (in Chinese).
程功. 银浆印刷的织物可穿戴天线研究. 硕士学位论文, 北京理工大学, 2018.
54 Bai H, Peng F, Zhang K, et al. Journal of Donghua University (Natural Science), 2020, 46(2), 220(in Chinese).
白欢, 彭飞, 张凯, 等. 东华大学学报: 自然科学版, 2020, 46(2), 220.
55 Chauraya A, Whittow W G, Vardaxoglou J C, et al. IET Microwaves, Antennas & Propagation, 2013, 7(9), 760.
56 Leng T, Huang X, Chang K, et al. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1565.
57 Islam M T, Alam T, Yahya I, et al. Sensors, 2018, 18(12), 4212.
58 Sa’don S N H, Jamaluddin M H, Kamarudin M R, et al. Sensors, 2019, 19(22), 4835.
59 Jilani S F, Greinke B, Hao Y, et al. In: 2016 URSI International Symposium on Electromagnetic Theory (EMTS). Espoo, 2016, pp.846.
60 Mohassieb S A, Kirah K, Dorsam E, et al. Progress In Electromagnetics Research, 2017, 73, 87.
61 Li W, Meredov A, Shamim A. In: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Atlanta, 2019, pp.275.
62 Cook B S, Tehrani B, Cooper J R, et al. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1351.
63 Tsai C L, Chen K W, Yang C L. IEEE Antennas and Wireless Propagation Letters, 2015, 15, 1048.
64 Alrawashdeh R S, Huang Y, Kod M, et al. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1506.
65 Zhang Y. Study and design of flexible antenna with ultra-wideband. Master’s Thesis, Qingdao University, China, 2021 (in Chinese).
张莹. 宽频带柔性天线的研究与设计. 硕士学位论文, 青岛大学, 2021.
66 Ding Y X. Design of miniaturized flexible antenna. Master’s Thesis, Qingdao University, China, 2020 (in Chinese).
丁宇星. 小型柔性天线设计. 硕士学位论文, 青岛大学, 2020.
67 Qiu Y J. Study on miniaturized flexible and implantable RF antenna. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2015 (in Chinese).
邱义杰. 小型化可植入柔性射频天线研究. 博士学位论文, 电子科技大学, 2015.
68 Kuang Y. Development of the flexible textile conformal antennas and investigation of the radiation proerties. Ph. D. Thesis, Donghua University, China, 2021 (in Chinese).
邝野. 柔性纺织共形天线的构建及其辐射性能研究. 博士学位论文, 东华大学, 2019.
69 Mao L S. Research on key technologies of RFID reader antenna design and fabrication for flexible substrate. Master’s Thesis, Xi’an University of Technology, China, 2021 (in Chinese).
毛隆森. 面向柔性基材的RFID阅读器天线设计与制备关键技术研究. 硕士学位论文, 西安理工大学, 2021.
70 Zhong T. Design and application of flexible stretchable RFID tags based on printed electroni technology. Master’s Thesis, China Jiliang University, China, 2019 (in Chinese).
钟涛. 基于印刷电子技术的柔性可拉伸RFID标签的设计与应用. 硕士学位论文, 中国计量大学, 2019.
[1] 何晓龙, 陈志谦, 李璐, 石一非. 基于聚合物-陶瓷复合材料的异形龙伯透镜天线的研究及制造[J]. 材料导报, 2023, 37(12): 21100228-6.
[2] 李俊生, 李端, 李学超, 高世涛, 王衍飞, 万帆, 刘荣军. 3D打印天线罩技术研究进展[J]. 材料导报, 2022, 36(22): 22050328-10.
[3] 鲁春驰, 王影, 王东征. 涂布正极表面丝网印刷氧化锌颗粒对锂离子电池性能的影响[J]. 材料导报, 2022, 36(21): 21050056-5.
[4] 阚国锦, 林朝光, 刘波, 周禹, 张晓晨. 多孔氮化硅气密涂层技术研究[J]. 材料导报, 2022, 36(13): 21010060-7.
[5] 张栋凯, 吴凯, 刘刚, 孙军. PDMS基体上金属薄膜变形与断裂行为及其应变传感性能综述[J]. 材料导报, 2022, 36(13): 21010111-8.
[6] 刘炘城, 邵海成, 乔冠军, 陆浩杰, 于刘旭, 张相召, 刘桂武. 氧化铝陶瓷表面连续导电金膜的制备工艺及性能[J]. 材料导报, 2021, 35(8): 8076-8081.
[7] 孙静, 李韩飞, 郭培志, 李光林, 刘志远. 柔性可拉伸导电材料用于生理信号获取与反馈的研究简述[J]. 材料导报, 2021, 35(5): 5158-5165.
[8] 闫美佳, 顾灵雅, 刘江浩, 辛智青. 可拉伸导体的印刷制备概述[J]. 材料导报, 2020, 34(19): 19122-19127.
[9] 林进义, 安翔, 白鲁冰, 徐曼, 韦传新, 解令海, 林宗琼, 黄维. 柔性高分子半导体:力学性能和设计策略[J]. 材料导报, 2020, 34(1): 1001-1008.
[10] 崔铮. 柔性混合电子——基于印刷加工实现柔性电子制造[J]. 材料导报, 2020, 34(1): 1009-1013.
[11] 陆骐峰,孙富钦,王子豪,张珽. 柔性人工突触:面向智能人机交互界面和高效率神经网络计算的基础器件[J]. 材料导报, 2020, 34(1): 1022-1049.
[12] 骆泽纬,田希悦,范基辰,杨鑫,樊天意,王超伦,吴幸,褚君浩. 智能时代下的新型柔性压阻传感器[J]. 材料导报, 2020, 34(1): 1069-1079.
[13] 马飞祥,丁晨,凌忠文,袁伟,孟秀清,苏文明,崔铮. 导电织物制备方法及应用研究进展[J]. 材料导报, 2020, 34(1): 1114-1125.
[14] 宋江,王腾蛟,冯涛,CHAN Siew Yin,荣帆,李鹏,黄维. 柔性电子在糖尿病诊断、治疗及护理中的应用综述[J]. 材料导报, 2020, 34(1): 1126-1134.
[15] 李一帆,刘宇航,孙晋蒙,吴乾鑫,龚昕,杜洪方,艾伟,黄维. 柔性储能器件的电极设计研究进展[J]. 材料导报, 2020, 34(1): 1177-1186.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed