Abstract: Flexible antennas are of great interest for important applications in current and future communication and medical systems due to their distinctive features of lightweight, small size, thin thickness, and easy conformal capabilities. Printed flexible electronic technology allows for the manufacture of flexible antennas. The development of flexible materials, the rational selection of printing techniques, and the unique antenna structure design have all become critical points in the research on how to design and print miniaturized flexible antennas that can meet wireless communication functions and are easy to integrate. This paper reviews recent advances in the field of flexible printed antennas, with particular attention on material categories and properties, manufacturing technologies, structure design strategies for miniaturization or wearability, and applications. The fabrication route of a flexible printed antenna is proposed: one is the selection of flexible materials and antenna form, which includes the flexible substrate and conductive material; the other is the structural design and testing of the antenna, which must be done in accordance with the actual application requirements. The challenges and key issues in the aspects of the antenna’s material, process, and design are discussed, and future development is also proposed. As for materials, metallic conductive materials, heat-resistant polymers, and stretchable substrate materials are excellent choices. The selection of the printing technique is determined by the application and the rheological parameters of the printable materials. Miniaturization, multi-function, and multi-band are the desired antenna characteristics. In conjunction with communications and medical applications, as well as the adoption of new materials, the design of flexible printed antennas should be continuously improved in order to be suitable for more occasions in the future.
1 Yang W, List-Kratochvil E J, Wang C. Journal of Materials Chemistry C, 2019, 7(48), 15098.
2 Tran T S, Dutta N K, Choudhury N R. Advances in Colloid and Interface Science, 2018, 261, 41.
3 Yin Z, Huang Y, Bu N, et al. Chinese Science Bulletin, 2010, 55(30), 3383.
4 Cui Z. Printed electronics: materials, technologies and applications, John Wiley & Sons, Singapore, 2016, pp.13.
5 Leenen M A, Arning V, Thiem H, et al. Physica Status Solidi (A), 2009, 206(4), 588.
6 Topsakal E. In: 2009 International Conference on Electromagnetics in Advanced Applications. IEEE, Turin, 2009, pp.890.
7 Koga H, Inui T, Miyamoto I, et al. RSC Advances, 2016, 6(87), 84363.
8 Paracha K N, Rahim S K A, Chattha H T, et al. International Journal of Antennas and Propagation, 2018, 2018, 1.
9 Lamminen A, Arapov K, de With G, et al. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 1883.
10 Kubo M, Li X, Kim C, et al. In: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC). IEEE, Florida, 2011, pp.1582.
11 Song L, Myers A C, Adams J J, et al. ACS Applied Materials & Interfaces, 2014, 6(6), 4248.
12 Smith P, Shin D Y, Stringer J, et al. Journal of Materials Science, 2006, 41(13), 4153.
13 Dearden A L, Smith P J, Shin D Y, et al. Macromolecular Rapid Communications, 2005, 26(4), 315.
14 Adner D, Wolf F M, Möckel S, et al. Thin Solid Films, 2014, 565, 143.
15 Deng D, Qi T, Cheng Y, et al. Journal of Materials Science: Materials in Electronics, 2014, 25(1), 390.
16 Zope K R, Cormier D, Williams S A. ACS Applied Materials & Interfaces, 2018, 10(4), 3830.
17 Walker S Band Lewis J A. Journal of the American Chemical Society, 2012, 134(3), 1419.
18 Yang W, Mathies F, Unger E L, et al. Journal of Materials Chemistry C, 2020, 8(46), 16443.
19 Chen C, Chen C, Dong T Y, et al. Acta Materialia, 2012, 60(16), 5914.
20 Shankar R, Groven L, Amert A, et al. Journal of Materials Chemistry, 2011, 21(29), 10871.
21 Shen W F, Zhang X P, Huang Q J, et al. Nanoscale, 2014, 6(3), 1622.
22 Du D, Yang X, Yang Y, et al. Micromachines, 2019, 10(1), 42.
23 Chen S, Guan Y, Li Y, et al. Journal of Materials Chemistry C, 2017, 5(9), 2404.
24 Pourahmadazar J, Denidni T A. Microwave and Optical Technology Letters, 2018, 60(4), 887.
25 Baytöre C, Zoral E Y, Göçen C, et al. In: 2018 28th International Conference Radioelektronika (Radioelektronika). Prague, 2018, pp.1.
26 Li Z, Sinha S K, Treich G M, et al. Journal of Materials Chemistry C, 2020, 8(17), 5662.
27 Chen X, Liu X, Li S, et al. Nanoscale, 2020, 12(20), 10949.
28 Qiu Y, Jung Y H, Lee S, et al. Electronics Letters, 2014, 50(24), 1782.
29 Li W, Hei Y, Grubb P M, et al. IEEE Access, 2018, 6, 50290.
30 Simorangkir R B, Kiourti A, Esselle K P. IEEE Antennas and Wireless Propagation Letters, 2018, 17(3), 493.
31 Huang J S, Jiang T Y, Wang Z X, et al. Microwave and Optical Techno-logy Letters, 2016, 58(5), 1232.
32 Mansour A, Shehata N, Hamza B, et al. International Journal of Antennas and Propagation, 2015, 2015, 845042.
33 Khaleel H R, Al-Rizzo H M, Rucker D G, et al. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 564.
34 Elobaid H A E, Rahim S K A, Himdi M, et al. IEEE Antennas and Wireless Propagation Letters, 2016, 16, 1333.
35 Cheng C X, Zhang F S. Journal of Microwaves, 2014, 30 (4), 25 (in Chinese).
程春霞, 张福顺. 微波学报, 2014, 30 (4), 25.
36 Whittow W G, Chauraya A, Vardaxoglou J, et al. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 71.
37 Hu G, Kang J, Ng L W, et al. Chemical Society Reviews, 2018, 47(9), 3265.
38 Lei P D. Printability of particle-free conductive ink of ink-jet based on RFID Antenna. Master’s Thesis, Tianjin University of Science and Technology, China, 2016 (in Chinese).
雷普东. 基于RFID天线无颗粒喷墨导电墨水印刷适性研究. 硕士学位论文, 天津科技大学, 2016.
39 Guo X, Hang Y, Xie Z, et al. Microwave and Optical Technology Letters, 2017, 59(1), 204.
40 Li P. The mechanical research of flexible printing patch antenna. Master’s Thesis, Harbin Institute of Technology, China, 2014 (in Chinese).
李鹏. 柔性印刷贴片天线的力学性能研究. 硕士学位论文, 哈尔滨工业大学, 2014.
41 Hu J Q, Li P, Dai F H. Journal of Institute of Technology, 2018, 50(5), 18 (in Chinese).
胡建强, 李鹏, 戴福洪. 哈尔滨工业大学学报, 2018, 50(5), 18.
42 Li W, Meredov A, Klionovski K, et al. In: 2019 IEEE Indian Confe-rence on Antennas and Propogation (InCAP). Ahmedabad, 2019, pp.1.
43 Zhong T, Jin N, Yuan W, et al. Materials, 2019, 12(18), 3036.
44 Ram P, Banu N M, Light R R J. Materials Today: Proceedings, 2021, 45, 2508.
45 Mirzaee M, Noghanian S, Wiest L, et al. In: 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. Vancouver, 2015, pp.1308.
46 Jun S, Sanz-Izquierdo B, Summerfield M. In: 2015 Loughborough Antennas & Propagation Conference (LAPC). Loughborough, 2015, pp.1.
47 Trajkovikj J, Zürcher J F, Skrivervik A K. In: 2012 Loughborough Antennas & Propagation Conference (LAPC). Loughborough, 2012, pp.1.
48 Inui T, Koga H, Nogi M, et al. Advanced Materials, 2015, 27(6), 1112.
49 Subramaniam S, Dhar S, Patra K, et al. In: 2014 IEEE Antennas and Propagation Society International Symposium (APSURSI). Memphis, 2014, pp.309.
50 Hussain N, Awan W A, Naqvi S I, et al. IEEE Access, 2020, 8, 173298.
51 Salonen P, Yang F, Rahmat-Samii Y, et al. In: IEEE Antennas and Propagation Society Symposium. Monterey, 2004, 1 pp.451.
52 Chen S. Study on the textile substrate tag antenna based on conductive ink. Master’s Thesis, Wuhan University of Technology, China, 2017 (in Chinese).
陈硕. 基于导电油墨的纺织物基底标签天线研究. 硕士学位论文, 武汉理工大学, 2017.
53 Cheng G. Investigation on silver ink printed textile antenna for wearable application. Master’s Thesis, Beijing Institute of Technology, China, 2018 (in Chinese).
程功. 银浆印刷的织物可穿戴天线研究. 硕士学位论文, 北京理工大学, 2018.
54 Bai H, Peng F, Zhang K, et al. Journal of Donghua University (Natural Science), 2020, 46(2), 220(in Chinese).
白欢, 彭飞, 张凯, 等. 东华大学学报: 自然科学版, 2020, 46(2), 220.
55 Chauraya A, Whittow W G, Vardaxoglou J C, et al. IET Microwaves, Antennas & Propagation, 2013, 7(9), 760.
56 Leng T, Huang X, Chang K, et al. IEEE Antennas and Wireless Propagation Letters, 2016, 15, 1565.
57 Islam M T, Alam T, Yahya I, et al. Sensors, 2018, 18(12), 4212.
58 Sa’don S N H, Jamaluddin M H, Kamarudin M R, et al. Sensors, 2019, 19(22), 4835.
59 Jilani S F, Greinke B, Hao Y, et al. In: 2016 URSI International Symposium on Electromagnetic Theory (EMTS). Espoo, 2016, pp.846.
60 Mohassieb S A, Kirah K, Dorsam E, et al. Progress In Electromagnetics Research, 2017, 73, 87.
61 Li W, Meredov A, Shamim A. In: 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting. Atlanta, 2019, pp.275.
62 Cook B S, Tehrani B, Cooper J R, et al. IEEE Antennas and Wireless Propagation Letters, 2013, 12, 1351.
63 Tsai C L, Chen K W, Yang C L. IEEE Antennas and Wireless Propagation Letters, 2015, 15, 1048.
64 Alrawashdeh R S, Huang Y, Kod M, et al. IEEE Antennas and Wireless Propagation Letters, 2015, 14, 1506.
65 Zhang Y. Study and design of flexible antenna with ultra-wideband. Master’s Thesis, Qingdao University, China, 2021 (in Chinese).
张莹. 宽频带柔性天线的研究与设计. 硕士学位论文, 青岛大学, 2021.
66 Ding Y X. Design of miniaturized flexible antenna. Master’s Thesis, Qingdao University, China, 2020 (in Chinese).
丁宇星. 小型柔性天线设计. 硕士学位论文, 青岛大学, 2020.
67 Qiu Y J. Study on miniaturized flexible and implantable RF antenna. Ph. D. Thesis, University of Electronic Science and Technology of China, China, 2015 (in Chinese).
邱义杰. 小型化可植入柔性射频天线研究. 博士学位论文, 电子科技大学, 2015.
68 Kuang Y. Development of the flexible textile conformal antennas and investigation of the radiation proerties. Ph. D. Thesis, Donghua University, China, 2021 (in Chinese).
邝野. 柔性纺织共形天线的构建及其辐射性能研究. 博士学位论文, 东华大学, 2019.
69 Mao L S. Research on key technologies of RFID reader antenna design and fabrication for flexible substrate. Master’s Thesis, Xi’an University of Technology, China, 2021 (in Chinese).
毛隆森. 面向柔性基材的RFID阅读器天线设计与制备关键技术研究. 硕士学位论文, 西安理工大学, 2021.
70 Zhong T. Design and application of flexible stretchable RFID tags based on printed electroni technology. Master’s Thesis, China Jiliang University, China, 2019 (in Chinese).
钟涛. 基于印刷电子技术的柔性可拉伸RFID标签的设计与应用. 硕士学位论文, 中国计量大学, 2019.