Please wait a minute...
材料导报  2020, Vol. 34 Issue (19): 19122-19127    https://doi.org/10.11896/cldb.19060060
  金属与金属基复合材料 |
可拉伸导体的印刷制备概述
闫美佳1,2, 顾灵雅1, 刘江浩1, 辛智青1,2
1 北京印刷学院印刷与包装工程学院,北京 102600
2 北京市印刷电子工程技术研究中心,北京 102600
Overview of Preparation of Stretchable Conductors by Printing
YAN Meijia1,2, GU Lingya1, LIU Jianghao1, XIN Zhiqing1,2
1 Printing and Packaging Engineering College, Beijing Institute of Graphic Communication, Beijing 102600, China
2 Beijing Printed Electronics Engineering Research Center, Beijing 102600, China
下载:  全 文 ( PDF ) ( 3241KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 可穿戴电子器件可应用于电子皮肤、人体运动监测、医疗健康行业中,是当前印刷电子领域的研究热点之一,但可穿戴电子应用面临的一个重要挑战是器件的突兀性。可拉伸导体是实现可穿戴电子器件突兀性最小化的关键技术。
根据制备方法,可拉伸导体可分为两类。一种是直接利用本质上可拉伸的功能材料实现可拉伸,获得抵抗应变的可靠电导,即将导电填料与弹性聚合物混合或嵌入到弹性基质上获得,可提高导电网络的机械稳定性,且导电组分难以从基质上脱落。这种方法制备的导体拉伸性有限(通常低于30%形变,如果大于40%形变电阻增加2倍以上),或者由于大量绝缘弹性聚合物的存在使本身导电性较差。另一种是通过巧妙的结构将具有不同作用的元件组合成一个整体,获得抵抗应变的可靠电导,包括通过可变形的导线将各个微电子结构连接起来形成岛桥结构,或者设计成开放网格式的结构利用面内转动实现可拉伸。这种方法不是本质上可拉伸,而是依靠结构改变来承受大的应变,但结构设计制造过程复杂,并且在拉伸之后不能完全恢复原始形貌,限制了其导电功能和机械拉伸稳定性。因此,基于内在完全可拉伸元件的可拉伸电子器件的发展受到极大关注。
为了制备具有二维平面结构、本质上可拉伸的导体,使其具有较好的导电性和机械拉伸稳定性,往往需要将两种方法结合在一起,如采用真空沉积、光刻等方法制备含有金属网的弹性膜。然而,这些制备工艺属于减法过程,工艺复杂、成本高、无法规模化,难以用于大面积电子中。印刷作为一种快速图案化技术,通过印刷可溶液化的弹性复合导电油墨,可以实现以较低成本制备平面图案化、本质上可拉伸的导体。因此,开发与印刷设备、工艺兼容的弹性复合导电油墨成为关键技术。
本文介绍了弹性复合导电油墨的类型与制备及可拉伸导体图案的印刷技术,分析当前可拉伸导体应用的限制,为突破其在可穿戴传感器中的应用限制提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
闫美佳
顾灵雅
刘江浩
辛智青
关键词:  可拉伸导体  印刷技术  导电性  拉伸    
Abstract: Wearable electronic device can be used in electronic skin, human motion monitoring, medical and health industry, it becomes one of research hotspots in the field of printed electronics. However, the unobtrusiveness of wearable electronic devices is an important challenge for wearable electronic applications. Stretchable conductor is the key technology to minimize the unobtrusiveness of wearable electronic devices.
According to the preparation method, stretchable conductors can be divided into two categories. One is directly use of the essential and stretc-hable functional materials to achieve reliable conductance to resist strain. The mechanical stability of conductive networks can be improved by mixing conductive fillers with elastic polymers or embedding them into elastic substrates, and the conductive components are difficult to fall off from the substrates. The conductors fabricated by this method have limited tensile properties (generally less than 30% deformation, resistance will be increased by more than two times if more than 40% deformation), or poor electrical conductivity due to the presence of a large number of insulating elastic polymers. The other is to integrate the elements with different functions by structure design to obtain reliable conductance against strain. It includes connecting micro-electronic structures to form island-bridge structures by stretchable wires, or designing open grid structures to achieve stretchability by in-plane rotation. This method can withstand large strains by structure deformation, and is not essentially stretchable. However, the design and manufacture of structure are complicated, and the original morphology cannot be completely restored after repeated stretching. Thus its electrical conductivity and mechanical tensile stability is limited. Therefore, the development of stretchable electronic devices based on intrinsically fully stretchable components has attracted great attention.
In order to prepare intrinsically stretchable conductors with two-dimensional planar structure with good conductivity and mechanical stretchability, it is necessary to combine the two above methods. Elastic film with metal mask prepared by vacuum deposition and photolithography. However, these preparation processes belong to subtraction process, which is complex, costly and can not be scaled up, and it is difficult to acquire large-area electronics. Printing technology, as a fast patterning technology, can be used for the preparation of planar patterned and intrinsically stretc-hable conductors at a lower cost by using soluble and elastic composite conductive ink. Therefore, the development of elastic composite conductive ink compatible with printing equipment and process is the key technologies.
In this paper, the types and preparation of elastic composite conductive ink and printing technologies of stretchable conductor patterns are introduced. The limitations of current stretchable conductor application are analyzed, which can provide reference for breaking through the limitations of wearable sensor application.
Key words:  stretchable conductor    printing technologies    conductivity    stretchability
                    发布日期:  2020-11-05
ZTFLH:  TS05  
基金资助: 北京印刷学院科技创新服务能力建设(Ea201803);绿色印刷与出版协同创新中心建设(2011);北京印刷学院2019年教师队伍国际化能力提升(12000400001)
通讯作者:  zhiqingxin@bigc.edu.cn   
作者简介:  闫美佳,2017年6月毕业于河南科技大学,获得工学学士学位。现为北京印刷学院印刷电子工程技术研究中心硕士研究生。目前主要研究领域为柔性可拉伸电极。
辛智青,北京印刷学院副教授、硕士研究生导师。2001年7月本科毕业于北京印刷学院,2013年7月在中国科学院化学研究所物理化学专业取得博士学位。2015年获批国家自然科学基金青年基金。主要从事无机导电材料、柔性印刷器件、新型印刷技术的研究工作。近年来,在纳米材料制备、精细导线印刷领域发表论文10余篇,包括SmallAdvanced Materials InterfacesMaterials Research Express、《无机材料学报》等。
引用本文:    
闫美佳, 顾灵雅, 刘江浩, 辛智青. 可拉伸导体的印刷制备概述[J]. 材料导报, 2020, 34(19): 19122-19127.
YAN Meijia, GU Lingya, LIU Jianghao, XIN Zhiqing. Overview of Preparation of Stretchable Conductors by Printing. Materials Reports, 2020, 34(19): 19122-19127.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.19060060  或          http://www.mater-rep.com/CN/Y2020/V34/I19/19122
1 Song L, Myers A C, Adams J J, et al. ACS Applied Materials & Interfaces,2014,6(6),4248.
2 Yi X, Yu Z, Niu X, et al. Advanced Electronic Materials,2019,5(2),1800655.
3 Stoyanov H, Kollosche M, Risse S, et al. Advanced Materials,2013,25(4),578.
4 Kim K S, Zhao Y, Jang H, et al. Nature,2009,457(7230),706.
5 Wu C, Fang L, Huang X, et al. ACS Applied Materials & Interfaces,2014,6(23),21026.
6 Guan L Y, Nilghaz A, Su B, et al. Advanced Functional Materials,2016,26(25),4511.
7 Zhao S, Li J, Cao D, et al. Journal of Materials Chemistry C,2016,4(27),6666.
8 Huang Y Y, Terentjev E M. Advanced Functional Materials,2010,20(23),4062.
9 Niu X Z, Peng S L, Liu L Y, et al. Advanced Materials,2007,19(18),2682.
10 Yuan J, Yao S, Li W, et al. The Journal of Physical Chemistry C,2014,118(40),22975.
11 Lee J H, Ryu H, Kim T Y, et al. Advanced Energy Materials,2015,5(18),1500704.
12 Hu M, Cai X, Guo Q, et al. ACS Nano,2015,10(1),396.
13 Li C F, Li W, Zhang H, et al. ACS Applied Materials & Interfaces,2018,11(3),3231.
14 Kim I, Woo K, Zhong Z, et al. Nanoscale,2018,10(17),7890.
15 Matsuhisa N, Inoue D, Zalar P, et al. Nature Materials,2017,16(8),834.
16 Feng P, Ji H, Zhang L, et al. Nanotechnology,2019,30(18),185501
17 Sekitani T, Nakajima H, Maeda H, et al. Nature Materials,2009,8(6),494.
18 Chun K Y, Oh Y, Rho J, et al. Nature Nanotechnology,2010,5(12),853.
19 Kim K S, Zhao Y, Jang H, et al. Nature,2009,457(7230),706.
20 Tang L X, Cheng S Y, Zhang L Y, et al. iScience,2018,4,302.
21 Suikkola J, Björninen T, Mosallaei M, et al. Scientific Reports,2016,6,25784.
22 Yao S S, Zhu Y. Advanced Materials,2015,27(9),1480.
23 Liu Y K, Lee M T. ACS Applied Materials & Interfaces,2014,6(16),14576.
24 Sun J, Jiang J, Bao B, et al. Materials,2016,9(4),253.
25 Rabinowitz J, Fritz G, Kumar P, et al. MRS Advances,2016,1(1),15.
26 Yan H L, Chen Y Q, Deng Y Q, et al. Applied Physics Letters,2016,109(8),083502.
27 Wang Y, Yu Z, Mao G, et al. Advanced Materials Technologies,2019,4(2),1800435.
28 Zhang T, Li L, Tian T, et al. New Chemical Materials,2016,44(5),60(in Chinese).
张太亮,李黎明,田天,等.化工新型材料,2016,44(5),60.
29 Lipomi D J, Lee J A, Vosgueritchian M, et al. Chemistry of Materials,2012,24(2),373.
30 Yu Z, Shang J, Niu X, et al. Advanced Electronic Materials,2018,4(9),1800137.
31 Lee P, Ham J, Lee J, et al. Advanced Functional Materials,2014,24(36),5671.
32 Fan J A, Yeo W H, Su Y, et al. Nature Communications,2014,5(1),3266.
33 Gonzalez M, Axisa F, Bulcke M V, et al. Microelectronics Reliability,2008,48(6),825.
34 Zhang Y, Wang S, Li X, et al. Advanced Functional Materials,2014,24(14),2028.
35 Zhang Y, Xu S, Fu H, et al. Soft Matter,2013,9,8062.
36 Yang S, Ng E, Lu N. Extreme Mechanics Letters,2015,2,37.
37 Wang Y.Design of stretchable liquid metal antenna and RFID tag. Master's Thesis, Huazhong University of Science and Technology, China,2016(in Chinese).
王曳舟.可拉伸液态金属天线与RFID标签设计.硕士学位论文,华中科技大学,2016.
38 Hussain A M, Ghaffar F A, Park S I, et al.Advanced Functional Mate-rials,2016,25(42),6557.
39 Yang C H, Chen B, Zhou J, et al. Advanced Materials,2016,28(22),4480.
40 Wang J, Yan C, Cai G, et al. Advanced Materials,2016,28(22),4490.
41 Chortos A, Liu J, Bao Z. Nature Materials,2016,15(9),937.
42 Chou H H, Nguyen A, Chortos A, et al. Nature Communications,2015,6,8011.
43 Ge J, Sun L, Zhang F R, et al.Advanced Materials,2016,28(4),722.
44 Yeo J C, Yap H K, Xi W, et al. Advanced Materials Technologies,2016,1(3),1600018.
45 Lim S, Son D, Kim J, et al. Advanced Functional Materials,2015,25(3),375.
46 Song J, Feng X, Huang Y. National Science Review,2016,3(1),128.
47 Li Y, Gao Y, Song J. Theoretical and Applied Mechanics Letters,2016,6(1),32.
[1] 孙绍琦, 王景芹, 朱艳彩, 张广智, 包志舟. 第一性原理分析La、W共掺杂SnO2的导电性[J]. 材料导报, 2020, 34(Z1): 48-52.
[2] 宋韦韦, 罗顺成, 韩兆玉, 晁代义, 方清万, 吕正风, 程仁策. 7050铝合金铸锭中Al3Zr的析出情况对锻板性能的影响[J]. 材料导报, 2020, 34(Z1): 334-337.
[3] 赵秋萍, 钱庆一, 张斌, 牟志星, 张兴凯. 质子交换膜燃料电池金属双极板表面碳基防护镀层研究进展[J]. 材料导报, 2020, 34(Z1): 395-399.
[4] 郝新超. 基于Anderson-Darling检验的复合材料厚板层间拉伸强度性能研究及B基准值[J]. 材料导报, 2020, 34(Z1): 480-485.
[5] 梁康, 任玉荣, 唐有根, 孙旦, 贾树勇, 王海燕, 黄小兵. 钛酸锂用于钠离子电池负极的研究进展[J]. 材料导报, 2020, 34(9): 9041-9047.
[6] 王鑫, 仲崇贵, 李桦, 董正超. 超导薄膜FeSe和FeS0.5Se0.5的磁性与电子特性的研究[J]. 材料导报, 2020, 34(4): 4068-4072.
[7] 李卿, 赵国瑞, 马文有, 余红雅, 刘敏. 选区激光熔化成形多孔Ti6Al4V (ELI)合金的拉伸性能及断裂机制[J]. 材料导报, 2020, 34(4): 4073-4076.
[8] 徐仰涛, 王永红, 马宏利. 钴及钴基合金拉伸和压缩变形机理的研究现状[J]. 材料导报, 2020, 34(19): 19117-19121.
[9] 梁双强, 陈革, 周其洪, FrankKo. 含缺陷三维编织复合材料拉伸性能试验[J]. 材料导报, 2020, 34(14): 14209-14213.
[10] 王铁军, 秦巍, 陈永庆, 闫英杰, 曹睿, 梁晨, 董浩, 车洪艳. Al和Mo含量对热等静压制备的FeCrAlMo合金组织及拉伸性能的影响[J]. 材料导报, 2020, 34(12): 12105-12109.
[11] 黄勇, 冉小龙, 严晓娟. 压缩量对单晶铜冷压焊接接头组织及性能的影响[J]. 材料导报, 2020, 34(12): 12110-12114.
[12] 张吴欣, 李志恒, 周梅琳, 尹玉, 刘凌云. T-ZnOw/硅橡胶复合材料的非线性电导特性研究[J]. 材料导报, 2020, 34(12): 12169-12172.
[13] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[14] 白强来, 付佺, 潘成刚, 王林德, 慕朝阳. 高延伸率柔性耐烧蚀涂料拉伸性能分析[J]. 材料导报, 2019, 33(z1): 485-487.
[15] 常江. 苯并三唑衍生物杂化聚氨酯基复合材料的微观形貌及力学性能探究[J]. 材料导报, 2019, 33(6): 1074-1078.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[9] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[10] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed