1 沈阳航空航天大学材料科学与工程学院,沈阳 110000 2 The University of Queensland,Brisbane 4072, Australia
Effect of Friction Stir Processing Parameters and Water Cooling on Grain Refinement and Deformation Control of A356 Casting Aluminum Alloy
MA Lin1,2, SONG Yujian1, CUI Qinghe1, SHI Yao1, JI Shude1, LI Zhuang1
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110000, China 2 The University of Queensland,Brisbane 4072, Australia
Abstract: A356 as-cast aluminum alloy can be widely used in aerospace and automobile manufacturing due to its advantages such as good processability, weldability and low cost. However, the casting defects, coarse grains and second phases of casting A356 aluminum caused the deterioration of mechanical properties and limited the applications in industry. Friction stir processing (FSP) is one of the most effective methods to solve the problems of casting A356 aluminum by eliminating casting defects, and refining grains and the second phases. In order to explore the internal relationship between FSP process and grain refinement, and realize the optimization of the structure and performance of as-cast A356 aluminum alloy, the effects of processing parameters and cooling processes on the processing zone forming, grain refinement, microhardness, and processing deformation are systematically analyzed. The results show that the strain and heat caused by the FSP rotation speed and the processing speed affect the grain refinement; the increase of the rotation speed can help the grain refinement by increasing the strain on the material, while the high heat is generated by the high rotation speed and the low processing speed at the same time, which will lead to grain growth. The water-cooling process can effectively suppress the grain growth and processing deformation. Besides, the accumulation of dislocations around the Si second-phase particles triggers local grain ultra-fineness.
马琳, 宋雨键, 崔庆贺, 石瑶, 姬书得, 李壮. 搅拌摩擦加工工艺及水冷对A356铸铝合金晶粒细化作用及变形控制[J]. 材料导报, 2021, 35(24): 24122-24127.
MA Lin, SONG Yujian, CUI Qinghe, SHI Yao, JI Shude, LI Zhuang. Effect of Friction Stir Processing Parameters and Water Cooling on Grain Refinement and Deformation Control of A356 Casting Aluminum Alloy. Materials Reports, 2021, 35(24): 24122-24127.
1 Wang Z J. Materials Reports B:Research Papers, 2019, 33(11), 3801(in Chinese). 王正军. 材料导报:研究篇, 2019, 33(11), 3801. 2 Li W S, Song D F, Zhou H T, et al. The Chinese Journal of Nonferrous Metals, 2020, 30(7), 1491(in Chinese). 李文树, 宋东福, 周海涛, 等. 中国有色金属学报, 2020, 30(7), 1491. 3 Yan J M. Study on microstructure and properties of A356 aluminum alloy wheel under different heat treatment conditions. Master's Thesis, Yanshan University, China, 2017(in Chinese). 闫俊梅. 不同热处理条件下A356铝合金轮毂组织和性能的研究. 硕士学位论文, 燕山大学, 2017. 4 Qin Z B, Wu Z, Hu W B. The Chinese Journal of Nonferrous Metals, 2019, 29(9), 2192(in Chinese). 秦真波, 吴忠, 胡文彬. 中国有色金属学报, 2019, 29(9), 2192. 5 Wu B B, Liu C L, Tong L, et al. Materials Reports A: Review Papers, 2015, 29(1), 99(in Chinese). 吴冰冰, 刘成龙, 童路, 等. 材料导报:综述篇, 2015, 29(1), 99. 6 Jiang H J, Liu C Y, Yang Z X, et al. Journal of Materials Engineering and Performance, 2019, 28(2), 1173. 7 Lin Y Y, Liu C L, Wu B B, et al. Materials Reports A: Review Papers, 2013, 27(15),139(in Chinese). 林英英, 刘成龙, 吴冰冰, 等. 材料导报:综述篇, 2013, 27(15),139. 8 Ma Z Y, Sharma S R, Mishra R S. Metallurgical & Materials Transactions A, 2006, 37(11), 3323. 9 Ma Z Y, Sharma S R, Mishra R S. Materials Science and Engineering A, 2006, 433(1), 269. 10 Ai X X, Yue Y M. High Temperature Materials and Processes, 2018, 37(7), 693. 11 Sun Z Q. Microstructure and property of friction stir welding joint for high strength aluminum alloy under controlled cooling condition. Master's Thesis, Yanshan University, China, 2010(in Chinese). 孙增强. 控冷条件下高强铝合金搅拌摩擦焊接头组织与性能.硕士学位论文, 燕山大学, 2010. 12 Akbari M, Khalkhali A, Keshavarz S M E, et al. Proceedings of the Institution of Mechanical Engineers, Part L Journal of Materials Design and Applications, 2018, 232(5), 89. 13 Ke L M, Pan J L, Xing L, et al. Chinese Journal of Mechanical Engineering, 2009, 45(4), 89(in Chinese). 柯黎明, 潘际銮, 邢丽, 等. 机械工程学报, 2009, 45(4), 89. 14 Dai Q S, Ou S S, Deng Y L, et al. Materials Reports B:Research Papers, 2017, 31(7), 143(in Chinese). 戴青松, 欧世声, 邓运来, 等. 材料导报:研究篇,2017,31(7),143. 15 Alidokht S A, Abdollah-zadeh A, Soleymani S, et al. Materials Characterization, 2012, 63, 90. 16 Meenia S, MD F K, Babu S, et al. Materials Characterization, 2016, 113, 134. 17 Zhang L L, Wang X J, Liu X. Materials Reports B:Research Papers, 2019, 33(2), 665(in Chinese). 张亮亮, 王希靖, 刘骁. 材料导:研究篇, 2019, 33(2), 665. 18 Xu Z Y, Hu D C. The Chinese Journal of Nonferrous Metals, 2020, 30(6), 1230(in Chinese). 徐振宇, 胡道春. 中国有色金属学报, 2020, 30(6), 1230. 19 Yang D, Chen W L, Wang S Y, et al. The Chinese Journal of Nonferrous Metals, 2013, 23(10), 2747(in Chinese). 杨栋, 陈文琳, 王少阳, 等. 中国有色金属学报, 2013, 23(10), 2747. 20 Kliauga A M, Ferrante M. Acta Materialia, 2004, 53(2), 345. 21 Mcnelley T R, Swaminathan S, Su J Q. Scripta Materialia, 2008, 58(5), 349. 22 Li X D, Li C G, Zhu Z M, et al. Transactions of the China Welding Institution, 2014, 35(2), 104(in Chinese). 李晓东, 李春广, 朱志民, 等. 焊接学报, 2014, 35(2), 104. 23 Li S P. Deformation mechanism and control of friction stir welding of aluminum alloy sheet. Master's Thesis, Central South University, China, 2011(in Chinese). 李生朋. 铝合金薄板搅拌摩擦焊焊接变形机理与控制. 硕士学位论文, 中南大学, 2011.